Computer Aided Detection of Breast Masses in Mammography using Support Vector Machine Classification

J. Lesniak, R. Hupse, M. Kallenberg, M. Samulski, R. Blanc, N. Karssemeijer and G. Székely

in: Medical Imaging, volume 7963 of Proceedings of the SPIE, 2011, page 79631K

DOI

Abstract

The reduction of false positive marks in breast mass CAD is an active area of research. Typically, the problem can be approached either by developing more discriminative features or by employing difierent classifier designs. Usually one intends to find an optimal combination of classifier configuration and small number of features to ensure high classification performance and a robust model with good generalization capabilities. In this paper, we investigate the potential benefit of relying on a support vector machine (SVM) classifier for the detection of masses. The evaluation is based on a 10-fold cross validation over a large database of screenfilm mammograms (10397 images). The purpose of this study is twofold: first, we assess the SVM performance compared to neural networks (NNet), k-nearest neighbor classification (k-NN) and linear discriminant analysis (LDA). Second, we study the classifiers' performances when using a set of 30 and a set of 73 region-based features. The CAD performance is quantified by the mean sensitivity in 0.05 to 1 false positives per exam on the free-response receiver operating characteristic curve. The best mean exam sensitivities found were 0.545, 0.636, 0.648, 0.675 for LDA, k-NN, NNet and SVM. K-NN and NNet proved to be stable against variation of the featuresets. Conversely, LDA and SVM exhibited an increase in performance when adding more features. It is concluded that with an SVM a more pronounced reduction of false positives is possible, given that a large number of cases and features are available.

A pdf file of this publication is available for personal use. Enter your e-mail address in the box below and press the button. You will receive an e-mail message with a link to the pdf file.