Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis

G. Litjens, C.I. Sanchez, N. Timofeeva, M. Hermsen, I. Nagtegaal, I. Kovacs, C. Hulsbergen-van de Kaa, P. Bult, B. van Ginneken and J. van der Laak

Nature Scientific Reports 2016;6:26286

DOI PMID

Abstract

Pathologists face a substantial increase in workload and complexity of histopathologic cancer diagnosis due to the advent of personalized medicine. Therefore, diagnostic protocols have to focus equally on efficiency and accuracy. In this paper we introduce 'deep learning' as a technique to improve the objectivity and efficiency of histopathologic slide analysis. Through two examples, prostate cancer identification in biopsy specimens and breast cancer metastasis detection in sentinel lymph nodes, we show the potential of this new methodology to reduce the workload for pathologists, while at the same time increasing objectivity of diagnoses. We found that all slides containing prostate cancer and micro- and macro-metastases of breast cancer could be identified automatically while 30-40% of the slides containing benign and normal tissue could be excluded without the use of any additional immunohistochemical markers or human intervention. We conclude that 'deep learning' holds great promise to improve the efficacy of prostate cancer diagnosis and breast cancer staging.

A pdf file of this publication is available for personal use. Enter your e-mail address in the box below and press the button. You will receive an e-mail message with a link to the pdf file.