Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks

A.A.A. Setio, F. Ciompi, G. Litjens, P. Gerke, C. Jacobs, S. van Riel, M.W. Wille, M. Naqibullah, C. Sanchez and B. van Ginneken

IEEE Transactions on Medical Imaging 2016;35(5):1160-1169

DOI PMID Citations found: 17


We propose a novel Computer-Aided Detection (CAD) system for pulmonary nodules using multi-view convolutional networks (ConvNets), for which discriminative features are automatically learnt from the training data. The network is fed with nodule candidates obtained by combining three candidate detectors specifically designed for solid, subsolid, and large nodules. For each candidate, a set of 2-D patches from differently oriented planes is extracted. The proposed architecture comprises multiple streams of 2-D ConvNets, for which the outputs are combined using a dedicated fusion method to get the final classification. Data augmentation and dropout are applied to avoid overfitting. On 888 scans of the publicly available LIDCIDRI dataset, our method reaches high detection sensitivities of 85.4% and 90.1% at 1 and 4 false positives per scan, respectively. An additional evaluation on independent datasets from the ANODE09 challenge and DLCST is performed. We showed that the proposed multi-view ConvNets is highly suited to be used for false positive reduction of a CAD system.

A pdf file of this publication is available for personal use. Enter your e-mail address in the box below and press the button. You will receive an e-mail message with a link to the pdf file.