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Abstract. Registration of the lungs in thoracic CT images is required
in many fields of application in medical imaging, for example for motion
estimation or analysis of pathology progression.
In this paper, we present a feature-based registration approach for lung
CT images based on lung surfaces and automatically detected inner-lung
landmark pairs. In a first step, an affine pre-registration of surface models
generated from lung segmentation masks is performed. Following, an au-
tomatic algorithm is used for the landmark identification and landmark
transfer between fixed and moving image. The result of this landmark
detection and the result of a non-linear diffusion-based surface registra-
tion are used to generate the final deformation field by thin-plate-splines
interpolation.
The approach is evaluated based on 20 CT scans provided for the EM-
PIRE10 study for pulmonary image registration. In this study, the ap-
proach reached a final placement of 21 out of 34 participating algorithms.
The evaluation shows a very good alignment of lung boundaries in con-
trast to a disappointing matching of inner lung structures, although land-
mark pairs were detected correctly with the automatic algorithm.
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1 Introduction

This paper describes a feature-based approach for the registration of lung CT
images. The idea of our approach is to exploit the criteria used in the EMPIRE10
challenge for the evaluation of registration methods. Since the participants were
not provided with all data used for evaluation, this was only partly possible. The
evaluation criteria for pulmonary image registration in the EMPIRE10 study are
(see ref. [10]):

(1) alignment of the lung boundaries,
(2) alignment of the major fissures,
(3) correspondence of annotated point pairs, and
(4) analysis of singularities in the deformation field.
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The data of the EMPIRE10 study consists of 20 pairs of chest CT scans, each
pair taken from a single subject. In addition to the CT data, binary lung masks
are provided for each scan. The lung masks can be used to optimize the regis-
tration according to criterion (1). The segmentation of the the major fissures in
chest CT images is a difficult problem. Although few automatic methods were
published, we have not implemented and tested one of these methods due to
reasons of time. Therefore criterion (2) cannot be taken into account in our
registration approach. The annotated point pairs used for evaluation were not
provided for the participants. However, in earlier studies we implemented an
automatic landmark detection and landmark transfer method for 4D CT images
[14]. This method is used to detect corresponding point pairs in the fixed and
moving image of the 20 pairs of chest CT scans, and our registration method op-
timizes criterion (3) according to these automatically detected point pairs. The
deformation field is computed based on thin-plate-splines under the constraints
derived from criterion (1) and (3). In this way, singularities in the deformation
field [criterion (4)] are avoided as long as surface and point correspondences are
consistent.

2 Methods

The goal of our registration approach is to calculate a transformation ϕ : ΩF →
ΩM that matches a fixed image IF (x) : ΩF → R and a moving image IM (x) :
ΩM → R according to criteria (1)-(4) (see sec. 1). ΩF and ΩM denotes the
domain of fixed and moving image, respectively, and ϕ(x) denotes the coordinate
in the moving image IM corresponding to the coordinate x in the fixed image
IF .

The registration method presented in this paper consists of five steps. In the
first step of our registration approach, surface models SF and SM of the lung
are generated from the lung segmentation masks. These surface models are gen-
erated by the Marching Cubes algorithm, followed by a triangle decimation and
a surface smoothing in order to obtain smooth surfaces with appropriate sur-
face normals and to reduce the computational complexity in the following steps.
Second, the surface models SF and SM are coarsely aligned by an affine pre-
registration using the Iterative-Closest-Point (ICP) algorithm [2]. The resulting
affine transformation ϕaff is used to initialize the third step: an automatic tem-
plate matching approach to detect corresponding inner-lung landmarks in the
chest CT scans IF and IM . In the fourth step, a symmetric non-linear surface
registration enables the precise alignment of the lung boundaries. The results of
the surface registration and the automatically detected corresponding inner-lung
landmarks are used to generate the final transformation ϕ based on thin-plate-
splines (TPS) in the last step.

Standard implementations provided by the Visualization Toolkit [13] are used
for the surface generation and affine pre-registration, hence, in this paper we
focus on the description of the automatic detection of corresponding landmark
pairs and our approach for symmetric non-linear surface registration.
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2.1 Automatic detection of corresponding landmark pairs in the
lungs

The algorithm for the automatic detection of corresponding inner-lung land-
marks follows to a large extent the approach described in [8, 9] and is detailed in
algorithm 1 (see also [14]). It consists of two steps: identification of appropriate
landmark candidates in the fixed image IF and robust transfer of the candidates
to the moving image IM .

Landmark identification: Landmarks should be characteristic anatomical
points of the lung, like prominent bifurcations of the vessels or the bronchial
tree. To identify such points, so-called distinctiveness values [8, 9] are computed
for all voxels within the eroded lung segmentation mask M ′

F . The computation
of the distinctiveness values consists of two terms: First, the dissimilarity of
intensity values in a local neighborhood of the voxel considered and the inten-
sity values around the neighboring voxels is determined. This dissimilarity term
is then weighted by a feature-based term. In [9], the weighting term is based
on the magnitude of the intensity gradients. As bifurcations of the bronchial
tree or vessels feature specific curvature characteristics, we propose in this pa-
per to use a curvature based differential operator instead, the Förstner operator
[7]. Additionally, landmark candidates were supposed to be approximately well
distributed throughout the lungs. Analogously to [9], this was achieved by pos-
tulating a minimum Euclidean distance between landmark candidates.

Landmark transfer: Landmark candidates of the fixed image are transfered to
the moving image by template matching (here: restricted to translations only).
We performed two runs: first, a template matching based on the intensity values
(Hounsfield Units, HU), followed by a second run using the answer of the applied
curvature based operator. The template was centered at the position of the
landmark candidate in the fixed image. The search space was a subregion of
the moving image. It was centered at the original landmark candidate position
in the fixed image space, but transformed by ϕaff . Its size was chosen based
on a-priori knowledge about breathing motion amplitudes. For both runs, the
correlation coefficient was maximized to establish an optimal matching.

For robustness purposes of following registration steps, landmark candidates
are discarded if the correlation value of the first template matching run is below
a correlation threshold rHU,min or the transfered landmark positions differ by
more than a prescribed distance dmax for the two runs.

2.2 Non-linear registration of lung surfaces

The surface-based non-linear registration algorithm presented in this paper is
related to the Geometry-Constrained-Diffusion algorithm presented in [1]. The
Geometry-Constrained-Diffusion of the displacement field u : R

3 → R
3 mapping
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Algorithm 1 Detection of corresponding landmark pairs
Input:
CT images IF : ΩF → R, IM : ΩM → R,
eroded lung segmentation mask M ′

F : ΩF → {0, 1},
number Nl of landmarks candidates.
Output:
Lists LF = (x1, . . . , xnl) and LM = (y1, . . . , ynl) with xi ∈ ΩF , yi ∈ ΩM , nl ≤ Nl of
corresponding landmarks in IF and IM .

1: Let x, x′ ∈ ΩF be the lung voxels in IF , i.e. all voxels with M ′
F = 1.

Then, compute for each x the associated distinctiveness D(x):

D(x) :=
[det C(x)/ trace C(x)]

maxx′ [det C(x′)/ trace C(x′)]

∑
x′′∈Q⊂S2

r (x)

MSD(Br′ (x) , Br′ (x′′))
|Q|

where [det C(x)/ trace C(x)] denotes the Förstner-Operator [7] and

C := ∇IF (∇IF )T with ∇IF the image gradient of IF ,
S2

r (x): 2-sphere of radius r, centered at x,
Br′ (x): 3-ball of radius r′, centered at x.

Let
(
x1, ..., x|Br′ (x)∩ΩF |

)
and

(
x′

1, ..., x
′
|Br′ (y)∩ΩF |

)
be correspondingly sampled

sequences of the voxels in Br′ (x) and Br′ (x′). Then, MSD is defined as

MSD
(
Br′ (x) , Br′

(
x′)) :=

1

|Br′ (x) ∩ ΩF |
|Br′ (x)∩ΩF |∑

i=1

(
IF (xi) − IF

(
x′

i

))2
.

2: Sort points x with |∇IF (x)| ≥ θ∇IF in descending order acc. to D (x) into list PF .
3: If size of PF is < Nl, decrease gradient threshold θ∇IF .
4: If size of PF is < Nl and θ∇IF > 0, go to line 2.

5: for all points x in list PF do
6: Move x to LF if its Euclidian distance to all points in LF is > θdist.
7: If size of LF is Nl, then continue with line 9.
8: end for
9: If size of LF is < Nl, decrease the minimum distance θdist.

10: If size of LF is < Nl and θdist > 0, go to line 5.

11: for all elements xi in LF do
12: Extract a mx×my×mz subimage T (xi) of IF (the template to be matched), cen-

tered at xi, and search the voxel yi ∈ ΩM such that the mx×my×mz subimage
T ′ (yi) of IM maximizes the correlation rHU of the intensity values of T and T ′.

13: Analogously do a template matching for the Förstner images of IF and IM .
14: if the correlation rHU is smaller than a prescribed minimum correlation rHU,min

or the returned voxels yi of the template matching processes (lines 12 and 13)
differ by more than a prescribed Euclidean distance dmax then

15: Remove xi from list LF .
16: else
17: Append voxel yi to list LM .
18: end if
19: end for

168



the surface s1 : R
2 → R

3 to the surface s2 : R
2 → R

3 is given by [1]:

∂tu =

⎧⎨⎩ Δu − n2
n2 · Δu

‖n2‖2
if x ∈ s1 (1a)

Δu if x �∈ s1, (1b)

where n2 is the surface normal of s2 at position x + u(x). The term x−n n·x
‖n‖2

in eq. (1a) represents a projection of a vector x to the tangent plane with normal
n. Thus, only the tangential part of the diffusion along the surface is kept and
the points x + u(x) for x ∈ s1 are allowed to travel only along the surface s2.
After a sufficient initialization of u, Andresen and Nielsen propose an iterative
three-step algorithm to solve eq. 1: (1) Convolve the displacement field u with
a Gaussian kernel, (2) For all points on the deformed surface s1: find the corre-
sponding point on the target surface s2, and (3) For all points on the deformed
surface s1: change the displacements u according to the match. The resulting
transformation ϕ(x) = x + u(x) is given for ∂tu = 0.

In this paper we propose an alternative implementation of a diffusive surface
registration to address two issues: reduction of the computational complexity and
symmetry according to the ordering of source and target images. In contrast to
the implementation in [1, 6] the displacement field u is not computed on an image
grid. Instead, we compute displacement vectors for the surface points only. Given
two point sets SF =

{
x1, . . . ,xNF

|xi ∈ R
3
}

and SM =
{
y1, . . . ,yNM

|yj ∈ R
3
}
,

we search for the set of displacement vectors U =
{
u1, . . . ,uNF

|ui ∈ R
3
}

to
match SF onto SM and W =

{
w1, . . . ,wNM

|wj ∈ R
3
}

to match SM onto SF .
The registration method is summarized in algorithm 2.

Two essential steps of the algorithm are now explained in greater detail: the
determination of the closest points and the Gaussian smoothing of the displace-
ment vectors. The differential characteristics of the surfaces contain important
information about the correspondence of surface points. Therefore, as proposed
in [6], surface normals and local curvature characteristics are used for closest
point determination: For a point x on surface SF find the corresponding point
y on surface SM , which minimizes:

D(x,y) = α‖x − y‖2 + β‖n(x) − n(y)‖2 + γ(κε(x) − κε(y))2. (2)

n(x) denotes the surface normal and κε(x) denotes a curvature value of point
x. The normal vectors n of the triangulated surface models are calculated as
proposed in [13]. To determine the surface curvature, a moment-based curvature
measure of discrete surfaces κε is used [5]. First, the barycentre Bε(x) of a small
neighborhood of the surface point x is determined. Then the distance

κε(x) =
1
ε

(n(x) · (Bε(x) − x)) (3)

between Bε(x) and the tangential plane through the point x with surface normal
n(x) is computed. The size of the regarded neighborhood is given by the built-in
scale parameter ε. The curvature measure κε allows to distinguish smooth regions
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Algorithm 2 Diffusion-based surface registration
Initialize ∀ui ∈ U with the displacements of the affine pre-registration ϕaff and
∀wi ∈ W with the inverse affine transformation ϕ−1

aff , set k = 0
repeat

Deform the point sets: S
k
F =

{
xk

i = xi + ui|i = 1, . . . , NF

}
and

S
k
M =

{
yk

j = yj + wj |j = 1, . . . , NM

}
for all xk

i ∈ S
k
F do

Find the closest point yj on SM , which minimizes D(xk
i , yj)

Set ui = yj − xi and wj = xi − yj , where xi is the point position on SF

end for
for all yk

j ∈ S
k
M not processed in the last step do

Find the closest point xi on SF , which minimizes D(yk
j , xi)

wj = xi − yj , where yj is the point position on SM

end for
∀ui ∈ U: compute the Gaussian weighted average of all displacement vectors in
the neighborhood of xi

∀wj ∈ W: compute the Gaussian weighted average of all displacement vectors in
the neighborhood of yj

Swap SF and SM as well as U and W

Let k ← k + 1
until a stop criterion is fulfilled, i.e. the algorithm converges

(κε ≈ 0) from convex surface regions (κε < 0) and from concave surface regions
(κε > 0). The presented method is an extension of the curvature classification
via local zero order moments as suggested in [4]. Kd–trees are used to perform
an efficient closest point search.

To smooth the computed displacement, for each of the displacement vectors
in U (W respectively), we determine the set of displacement vectors in the neigh-
borhood of its surface location x: N(U, x) = {uj ∈ U | ‖xj − x‖ ≤ 3σ, xj ∈ SF }.
Following, a Gaussian weighted average is constructed and divided by the sum
of the weights:

ūi =
1∑
j wj

∑
uj∈N(U,xi)

wjuj , (4)

where wj = e

(
− ‖xj−xi‖2

2σ2

)
is the Gaussian weighted distance between ui and uj .

The standard deviation of the Gaussian σ, the weights of the distance mea-
sure α, β, γ, and the scale parameter ε are the only parameters in the numerical
implementation. The point sets SF and SM are given by the triangle vertexes of
the surfaces SF and SM .

2.3 Deformation field generation

Given the set of corresponding landmark pairs LF and LM computed in sec-
tion 2.1 and the surface correspondences computed in section 2.2, we want to
construct a dense transformation ϕ : ΩF → ΩM that matches IF and IM .
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We chose to use thin-plate-splines [3] to generate ϕ. Thin-plate-splines ensure a
smooth, interpolating transformation by minimizing the bending energy subject
to a given set of corresponding point pairs. To extract corresponding point pairs
from the matched surfaces, we select sampling points on the fixed surface SF in
such a way that all selected points have a minimum distance of radius R. The
displacement U computed in section 2.2 is used to select the corresponding point
on SM . The computation time to calculate the TPS transformation is propor-
tional to the number of given point pairs. To minimize the number of sampling
points and generating an adequate matching of the surfaces simultaneously, we
include the curvature characteristics for the selection of sampling points. Surface
areas with high curvature feature prominent surface details as ridges or edges.
Therefore, surface points with high curvature are selected first to ensure the
matching of these prominent surface details: we select points with κε(x) > tκ
first and lower the threshold iteratively until a dense surface sampling is reached.

From the corresponding surface point pairs and the inner–lung landmark
pairs we compute the parameters of the TPS transformation ϕTPS as shown
in [3]. Following, we generate a dense displacement field by computing u(x) =
ϕTPS(x) − x for each voxel position in the fixed image.

2.4 Parameter selection

For all registered image pairs the same set of parameters was used. Most param-
eters were determined empirically based on test runs. Test runs were not limited
to the EMPIRE10 data sets, and so registration of other thoracic CT images
should lead to similar registration quality using the parameter values described.

Surface generation and affine pre-registration: The parameters for sur-
face decimation are selected in such a way that the number of surface vertexes
was reduced to approximately 50%. The resulting lung surfaces have between
60.000 and 600.000 vertex points depending on the image resolution. A Lapla-
cian surface smoothing was applied (relaxation factor 0.5 and 15 iterations). The
affine ICP registration of the generated surfaces is stopped either after a maxi-
mal number of iterations (kmax = 50) or if the mean point distance is below a
threshold (t = 0.01).

Landmark identification: Nl = 150 landmark candidates with a minimum
pairwise distance of initially θdist = 50 voxel (decremented by 5 for each loop run)
were identified in IF . The search space for landmark candidates was restricted
by the eroded lung mask where a spherical erosion kernel of 8 voxel radius was
applied. For computation of the distinctiveness values, sphere and ball radius
were r = 8 and r′ = 5 voxel with 45 points well distributed on the sphere [11].
The initial gradient magnitude threshold θ∇IF

was 300 (loop decrement: 10).

Landmark transfer: For this study, a template size of mx×my×mz = 15×15×15
voxel and a search space of size 3×3×5cm were used. The minimum correlation
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threshold which indicated a reliable transfer was rHU,min = 0.9 and the max-
imum distance of the transferred candidate positions as obtained by the two
template matching runs was dmax = 1 voxel.

Non-linear surface registration and deformation field generation: The
parameters of the non-linear surface registration are optimized with respect to
the computation times and the registration quality. Registration quality was
measured with respect to the alignment of the lung boundaries and the num-
ber of singularities in the displacement field. To speed up the determination of
point correspondences and to avoid the re-calculation of surface normals and
curvatures, we set α = 1, β = 0, and γ = 0 in eq. (2). We use σ = 5mm as
a compromise between the computation times and the number of singularities
in the generated TPS deformation. The registration stops either after a maxi-
mal number of iterations (kmax = 100) or if the mean point distance is below
a threshold (t = 10e−5). The surface curvature κε is computed with ε = 5mm.
The minimum distance radius for surface point selection is set to R = 10mm.
The radius is successively decreased if less than 800 points were selected.

For the test data sets between 800 and 1000 corresponding surface point
pairs and between 100 and 150 landmark pairs were selected to generate the
TPS deformation.

3 Results

The results of our approach are summarized in table 1. In the EMPIRE10 study,
the approach reached a final placement of 21 out of 34 participating algorithms.
This suggests that other approaches are more suitable for lung CT registration.

With regard to the alignment of the lung boundaries only, our feature-based
registration approach reached a placement of 4. This demonstrates the high
accuracy of our surface-based registration algorithm. However, the algorithm
does not guarantee diffeomorphic transformations and thus singularities occur
in 6 out of 20 computed deformation fields. Regarding the correspondence of
annotated point pairs only, the algorithms reached a placement of 28. A visual
inspection showed that algorithm 1 detected the landmark pairs correctly. Thus,
the high registration error is due to the different landmark sets used for TPS
interpolation and evaluation.

Computation time strongly depends on the image size, the number of land-
marks to detect, the number of lung surface points, the number of selected point
pairs for TPS calculation, and the number of iterations performed with regard to
the stop criterion. A standard PC with Quad-Core Intel Xeon E5504 CPU (2.0
GHz) and 24 GB memory was used to perform the registration. The automatic
detection of approx. 150 corresponding landmark pairs takes between 10 and 30
minutes. Surface generation and affine pre-registration takes less than 2 minutes
for all data sets. The following non-linear surface registration needs between 8
minutes and 70 minutes, whereof approximately half of the computation time is
needed for TPS interpolation and deformation field generation.
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Lung Boundaries Fissures Landmarks Singularities

Scan
Pair

Score Rank Score Rank Score Rank Score Rank

01 0.00 5.00 0.96 20.00 3.92 19.00 0.01 26.00

02 0.00 11.00 0.00 31.00 1.04 31.00 0.01 30.00

03 0.00 5.50 0.00 26.00 1.10 31.00 0.00 12.00

04 0.00 5.00 0.00 16.50 2.02 21.00 0.00 14.00

05 0.00 27.00 0.00 16.00 0.66 29.00 0.00 13.50

06 0.00 16.00 0.02 33.00 0.79 32.00 0.00 14.00

07 0.02 13.00 1.46 19.00 3.95 20.00 0.00 22.00

08 0.00 9.00 0.59 23.00 1.58 23.00 0.00 12.50

09 0.00 18.00 0.00 16.00 1.02 28.00 0.00 13.00

10 0.00 3.00 0.00 15.00 3.58 22.00 0.00 13.50

11 0.00 8.00 0.47 22.00 1.85 19.00 0.00 24.00

12 0.00 21.00 1.67 33.00 2.38 32.00 0.00 32.00

13 0.00 6.00 0.26 29.00 1.36 29.00 0.00 13.00

14 0.00 6.00 3.07 13.00 4.57 18.00 0.00 23.00

15 0.00 8.00 0.00 20.00 1.07 30.00 0.00 12.50

16 0.00 3.50 0.44 27.00 1.47 21.00 0.00 13.50

17 0.00 6.50 0.04 12.00 1.47 30.00 0.00 14.00

18 0.00 9.00 3.50 18.00 3.28 19.00 0.00 10.50

19 0.00 14.00 0.00 29.00 1.05 30.00 0.00 14.50

20 0.00 7.00 4.10 19.00 3.52 20.00 0.00 10.50

Avg 0.00 10.07 0.83 21.87 2.08 25.20 0.00 16.90

Average Ranking Overall 18.51

Final Placement 21
Table 1. Results for each scan pair, per category and overall. Rankings and final
placement are from a total of 34 competing algorithms.

4 Discussion

In this paper, we presented a feature based registration approach for lung CT
images. Section 2.1 proposes an automatic algorithm for landmark identification
and landmark transfer between fixed and moving image. The result of this land-
mark detection and the result of the non-linear surface registration presented in
section 2.2 are used to generate the final deformation field by TPS interpolation.

The evaluation of the EMPIRE10 study shows a very good alignment of
lung boundaries for our approach in contrast to a disappointing matching of
inner lung structures. Although landmark pairs were detected correctly with
algorithm 1, the final deformation showed a high landmark registration error in
the EMPIRE10 evaluation. We conclude from this that TPS interpolation based
on a set of sparse landmarks is not suitable to represent the complete inner-lung
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motion. Here, intensity based registration approaches are more suitable, and a
combination of surface and intensity registration is presented in [12].

A serious issue of the approach is the computation time. In the current imple-
mentation the algorithm does not fulfill the requirements of the clinical practice.
However, the current implementation is in an experimental state with numer-
ous possibilities for optimization. For example, a multi-resolution scheme will be
added to improve robustness and speed of the surface registration.
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