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Abstract. Treatment planning for high precision radiotherapy of head
and neck (H&N) cancer patients requires accurate delineation of many
critical structures. Manual contouring is tedious and often suffers from
large inter- and intra-rater variability. To reduce manual labor, we have
previously developed a fully automated, atlas-based method for H&N CT
image segmentation [1, 2]. In this work, we adapt the previous method
and apply it to tackle the parotid segmentation problem in the MIC-
CAI 2010 H&N Segmentation Challenge. The proposed method applies
a hybrid deformable image registration to map parotid labels from an
atlas image to the subject, the result of which is then refined using a
deformable surface model approach. Segmentation fusion using multiple-
atlases is also employed to further improve the segmentation accuracy.
Validation results on eight clinical datasets distributed by the MICCAI
workshop showed that the proposed method gave accurate segmentation
results, with a volume overlap above 85% for most subjects.

1 Introduction

Treatment planning for high precision radiotherapy of head and neck (H&N)
cancer patients requires accurate delineation of target volumes and OARs on
planning computed tomography (CT) images. Manual contouring is tedious and
time-consuming, and often suffers from large intra- and inter- rater variability.
Tools for automated segmentation are thus needed.

We have previously developed a fully automated atlas-based segmentation
method for H&N CT images [1, 2], which consists of a hierarchical atlas reg-
istration method and a multiple atlas fusion strategy. The method was shown
to produce very accurate results for the segmentation of the mandible and the
brainstem [2], as well as some other structures [1]. In this work, we adapt the pre-
vious method to the segmentation of the left and right parotids, as required by
the MICCAI 2010 H&N Auto-Segmentation Challenge. In particular, a different
atlas registration method is used here to account for the limitation of the train-
ing data (i.e., only parotids labels are available for each atlas). The rest follows
a similar strategy as our earlier work: we apply a deformable surface model to
improve the segmentation results of individual atlases and use multi-atlas fusion
to achieve overall better accuracy. In the following, we first briefly summarize
the multi-atlas segmentation framework and then describe the atlas registration
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and segmentation refinement methods in more details. Finally, we present the
validation results based on the test datasets provided by the workshop.

2 Method

2.1 Overview

The overall framework stays the same as in the previous work [2], where the
segmentation of a new subject is computed by applying multiple atlases sep-
arately and then combining the individual segmentation results. The STAPLE
(Simultaneous Truth And Performance Level Evaluation) algorithm, as originally
introduced by Warfield et al. [3], is applied as the segmentation fusion method.

The multi-atlas fusion strategy still requires a reliable atlas registration and
segmentation method in order to get good segmentation result for each individ-
ual atlas. In this work, we apply a hybrid non-linear image registration method
to align the subject to a chosen atlas, following a global linear registration. The
mapped structure labels are then refined by a deformable model method to fur-
ther improve the accuracy. The linear registration method applied here is exactly
the same as in [2]. Thus, in the next we only present the new non-linear image
registration algorithm and the deformable model-based parotid refinement.

2.2 Dense Hybrid Deformable Registration

The goal of the deformable registration is to align details between the atlas
and the subject images, given an initial linear registration. We use here a non-
parametric transformation model, where the image transformation T is modeled
directly as a vectorial displacement field U, such that T (x) = x + U(x) for
every image point x. In order to be able to handle intensity contrast changes
that often exist between CT images of different subjects in the parotid region,
we have designed a hybrid image matching metric to be used at this step. This
hybrid metric is a combination of the popular MI metric and a new normalized-
sum-of-squared-differences (NSSD) metric:

JH(I, J,U) = −MI(I, J,U) + w · NSSD(Ĩ , J̃ ,U), (1)

where I and J denote the atlas and the subject images respectively, and w
denotes a relative weighting of the two terms. From our experience, this hybrid
similarity measure provides better image alignment than using the MI metric
alone since the latter cannot account for local image contrast changes. Thus,
this new metric tends to improve the segmentation accuracy for all structures
comparing to the MI-only method of [2], not just limited to the parotids.

Definition of the MI metric is skipped here, which can be found in [4, 5]. The
NSSD-term is an edge-based alignment metric, which is defined as follows:

NSSD(Ĩ , J̃ ,U) =
1
N

∑
x

‖Ĩ(x) − J̃(T (x))‖2, (2)
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where

Ĩ(x) =
I(x) − μI(x)

σI(x)
, (3)

and μI = Gσ ∗ I and σ2
I = Gσ ∗ (I − μI)2 denote the local intensity mean and

local intensity variation for image I. Gσ denotes a Gaussian filter with kernel
size σ (the kernel size σ is chosen to be two times the image voxel size in all later
experiments). Similar notations hold for image J . We call Ĩ and J̃ the normalized
local offset images as implied by Eq. (3).

The solution for the optimal deformation field can be found using a compos-
itive, explicit local search scheme similar to what we initially proposed in [5].
In particular, the deformation field U is updated iteratively according to the
following equation:

Un = Un−1 ◦ (Id + un) + un; (4)

or equivalently,

Un(x) = Un−1(x + un(x)) + un(x), ∀x. (5)

In Eq. (4), Id denotes the identity transformation, “◦” denotes transformation
composition, and un is a local update field that optimizes the hybrid image
metric at each iteration step.

In this work, the update field in Eq. (4) is computed as the average of two
separate update fields, one for each of the two similarity terms. Consider first
the NSSD-term. Given the previous estimation of the deformation field (Un−1),
an update field (un) can be found that minimizes the NSSD metric between Ĩ
and J̃n = J̃ ◦ (Id + Un−1):

NSSD(Ĩ , J̃n ◦ (Id + un)) =
1
N

∑
x

‖Ĩ(x) − J̃n(x + un(x))‖2. (6)

Since Eq. (6) is a summation of N -independent terms, the optimal update un(x)
at each atlas image location x can be found separately. In particular, we search
the local neighbors of x in the deformed subject image J̃n and find the neighbor
x′ that minimizes ‖Ĩ(x) − J̃n(x′ = x + un(x))‖2. This gives the update field
corresponding to the NSSD-term. A second update field can be computed sim-
ilarly that optimizes the MI-term, as initially described in [5]. We then average
the two update fields as mentioned above to get the final update field for the
whole hybrid image metric, which is further smoothed with a spatial Gaussian
filter. The regularized update field is applied to update the total deformation
field according to Eq. (4), and the result is regularized using another Gaussian
filter. The iteration is repeated until a user-specified number of steps or until
the hybrid metric in Eq. (1) stops decreasing.

This dense deformable registration is the most time-consuming part of the
whole atlas-based segmentation method. To improve the computation efficiency
and make multi-atlas segmentation feasible in practice, we have implemented this
deformable registration algorithm on NVIDIA GPUs using the NVIDIA CUDA
programming model. As we have observed, the GPU-based implementation easily
offers a speed-up of more than 25× comparing against a modern CPU.
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2.3 Refinement of Parotid Segmentation using Deformable Surface
Model

In the last step of parotid segmentation using a single atlas, a deformable sur-
face model method is applied to improve the initial segmentation result as pro-
duced by atlas registration and label mapping. Refinements for the left and right
parotids are computed separately at this step.

Mathematically, we denote the initial parotid surface (either left or right) by
a vector-valued parametric function x0(r, s) = [x0(r, s), y0(r, s), z0(r, s)], which
gives the position of each surface point (indexed by (r, s)1) in the subject image’s
coordinate system. We model the surface deformation using a surface deforma-
tion field d(r, s), such that x(r, s) = x0(r, s) + d(r, s) gives the final location
of each surface point. The surface refinement is then formulated as finding the
optimal solution, dopt, that minimizes the following energy functional:

E(d) =
∫ ∫

exp(−‖∇P (x(r, s))‖2)drds +
∫ ∫

‖∇d(r, s)‖2drds, (7)

where P (x) ∝ exp(−(J(x)−μp)2/σ2
p) measures the probablity that a point x of

the subject image J belongs to the parotid region. The parotid intensity mean
μp and variance σ2

p are estimated based on the initial segmentation result. In the
above equation, the first term drives the surface to the boundary of the estimated
parotid region and the second term enforces the regularity or smoothness of the
surface displacement field. Regularizing the surface deformation instead of the
surface itself allows capturing fine details of the object shape whereas at the
same time enforcing the deformed surface to stay close to the initial shape. The
solution is computed iteratively with a gradient-descent scheme. We limit the
refinement to a local neighborhood of the initial segmentation and this step
usually takes less than ten seconds. An example result is illustrated in Fig. 1.

Fig. 1. Illustration of deformable model based refinement of parotid segmentation. The
images show three cross-sections for one subject. The blue curves are the initial results
before refinement and the red curves are the final results.

1 The parameters (r, s) simply indicate that the surface is intrinsically a two-
dimensional object. In practice, we approximate the surface using a triangulated
surface mesh and each surface node is indexed by a unique number.
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3 Results and Discussions

A total of 18 datasets were provided by the MICCAI 2010 H&N Auto-Segmentation
Challenge workshop at the offline competition stage. Among the 18 datasets, 10
were provided as the training data, for which expert manual segmentations of
the parotids were made available. We used the 10 training datasets as the atlases
and applied the proposed method to process the remaining 8 test datasets. As
described in Section 2, for each test dataset, 10 individual segmentation results
were first computed using each of the 10 atlases, and the results were then fused
using the STAPLE algorithm to get the final auto-segmentation result. The fu-
sion was performed independently for the left and the right parotids. The final
auto-segmentation results for all test subjects were submitted to the organizers
of the workshop and evaluated against manual expert segmentation.

All experiments were carried out on a HP xw8400 desktop computer equipped
with an Intel Xeon Quad-core 2.66 GHz CPU and a NVIDIA GTX 280 graphics
card. The computation time was about 1 minute for each dataset if a single atlas
is used and the total computation time was about 10 minutes for 10 atlases.

Fig. 2 illustrates the segmentation results for the left and right parotids
for one test dataset. The figures were generated by an independent reviewer (an
organizer of the workshop). As we can see from the figures, the auto-segmentation
results match the manual segmentation pretty well except for slices that are
corrupted by streaking artifacts.

For quantitative evaluation, the auto- and manual- segmentations were com-
pared in a slice-by-slice fashion for each dataset and the following quantitative
measures were computed for each slice: the symmetric Hausdorff distance (HD)
and the Dice similarity coefficient. A volumetric Dice similarity coefficient was
also computed for each dataset to assess the overall volume overlap. Details of
these evaluation criteria and their computation can be found in [6].

The overall statistics of the quantitative measures are summarized in Ta-
bles 1-2 for the left parotid and Tables 3-4 for the right parotid. From these ta-
bles, it can be seen that the median slice-wise Hausdorff distance mostly ranges
between 4–6 mm. The median slice-wise Dice coefficient is mostly above 0.85 for
both the left and the right parotids. The total volume overlap for most subjects
is also close to or above 0.85. Thus, our method provided quite accurate seg-
mentation for this soft-tissue structure. We note that the dataset No. 13 has a
relatively low accuracy, which is due to the fact that No. 13 has a truncated field
of view and the parotid region is not fully contained in the image. The accuracy
for the dataset No. 17 is also low, which is because the parotids of this subject
are much smaller than all the atlas subjects.

We note that the segmentation accuracy is lower than our previous results
on the mandible and the brainstem [2]. This is largely due to the fact that the
parotid is a structure with low contrast in typical H&N CT images. In addition,
the parotid region is often corrupted by the streaking artifacts, as observed in
many of the provided datasets. The artifacts (in either the atlas or the subject
image) make the atlas registration more difficult and also limit the accuracy of
the model-based refinement.
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Fig. 2. Snapshots of the parotid segmentation result for one test subject. Red curves
indicate the auto-segmentation result and green curves are the corresponding manual
segmentation.
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Dataset No. Mean HD Median HD No. of slices ( HD > 3 mm )

11 5.20 4.02 34 (31)

12 5.45 4.63 28 (23)

13 6.89 6.02 26 (26)

14 7.33 6.73 24 (22)

15 5.78 4.97 23 (21)

16 4.48 4.03 29 (23)

17 6.93 5.48 33 (31)

18 5.41 4.34 24 (20)

Table 1. Hausdorff distance (HD) statistics for left parotid segmentation in the testing
datasets.

Dataset No. Average slice OV Median slice OV Total volume OV

11 83.4 % 86.9 % 87.0 %

12 87.0 % 89.1 % 88.2 %

13 79.0 % 81.7 % 76.3 %

14 82.7 % 84.1 % 86.6 %

15 85.0 % 89.5 % 89.8 %

16 82.1 % 85.2 % 84.4 %

17 77.6 % 81.6 % 83.4 %

18 80.8 % 86.8 % 85.4 %

Table 2. Overlap (OV) statistics for left parotid segmentation in the testing datasets.

The last column in Table 1 and Table 3 shows the number of slices with a
Hausdorff distance greater than 3 mm for the left and the right parotid segmen-
tation results respectively. Typically, a Hausdorff distance greater than 3 mm
means that the auto-segmentation results need be edited before they can be
used clinically [6]. From the tables, it is seen that most slices still require some
editing. But from our experience, contour editing usually takes much less time
than drawing contours from scratch. Thus, the auto-segmentation method can
still help reduce manual contouring time in general. In addition, it has been
observed that editing a common auto-segmentation result usually helps improve
the consistency of contouring by different users. Of course, the current data is
insufficient to validate any of these claims.

4 Conclusion

In this work, we have developed an atlas-based method for fully automatic seg-
mentation of parotids in H&N CT images. From the experimental results gen-
erated for the MICCAI 2010 H&N Auto-segmentation Challenge workshop, it
was shown that the method offered good accuracy on real clinical data, as indi-
cated by a mean volume Dice coefficient above 0.85 for most cases. On the other
hand, automatic parotid segmentation is still a challenging problem due to the

303



Dataset No. Mean HD Median HD No. of slices ( HD > 3 mm )

11 6.16 6.25 32 (29)

12 6.87 5.69 30 (30)

13 6.42 5.78 26 (25)

14 6.31 5.25 24 (24)

15 7.06 5.27 26 (24)

16 3.57 3.09 31 (19)

17 4.81 3.91 27 (23)

18 4.31 3.73 25 (18)

Table 3. Hausdorff distance (HD) statistics for right parotid segmentation in the
testing datasets.

Dataset No. Average slice OV Median slice OV Total volume OV

11 85.7 % 89.4 % 88.1 %

12 82.4 % 85.6 % 84.9 %

13 83.4 % 87.5 % 82.8 %

14 81.4 % 85.3 % 85.3 %

15 83.4 % 88.2 % 88.1 %

16 86.2 % 87.4 % 86.8 %

17 77.3 % 84.8 % 83.8 %

18 82.8 % 88.7 % 88.2 %

Table 4. Overlap (OV) statistics for right parotid segmentation in the testing datasets.

usual presence of streaking artifacts in this region and the relatively low image
contrast. Future work will further improve the accuracy by studying adaptive
atlas selection, and investigating the use of statistical shape model for parotid
refinement.
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