N. Alves, J.S. Bosma, K. Venkadesh, C. Jacobs, Z. Saghir, M. de Rooij, J. Hermans and H. Huisma, "Erratum for: Prediction Variability to Identify Reduced AI Performance in Cancer Diagnosis at MRI and CT",
Radiology,
2023;309.
W. Hendrix, N. Hendrix, E. Scholten, M. Mourits, J. Trap-de Jong, S. Schalekamp, M. Korst, M. van Leuken, B. van Ginneken, M. Prokop, M. Rutten and C. Jacobs, "Deep learning for the detection of benign and malignant pulmonary nodules in non-screening chest CT scans",
Communications Medicine,
2023;3(1):156.
N. Alves, J.S. Bosma, K. Venkadesh, C. Jacobs, Z. Saghir, M. de Rooij, J. Hermans and H. Huisman, "Prediction Variability to Identify Reduced AI Performance in Cancer Diagnosis at MRI and CT",
Radiology,
2023;308(3):e230275.
W. Xie, C. Jacobs, J. Charbonnier, D. Slebos and B. van Ginneken, "Emphysema subtyping on thoracic computed tomography scans using deep neural networks",
Scientific Reports,
2023;13:14147.
K. Venkadesh, T. Aleef, E. Scholten, Z. Saghir, M. Silva, N. Sverzellati, U. Pastorino, B. van Ginneken, M. Prokop and C. Jacobs, "Prior CT Improves Deep Learning for Malignancy Risk Estimation of Screening-detected Pulmonary Nodules",
Radiology,
2023;308(2):e223308.
W. Hendrix, M. Rutten, N. Hendrix, B. van Ginneken, C. Schaefer-Prokop, E. Scholten, M. Prokop and C. Jacobs, "Trends in the incidence of pulmonary nodules in chest computed tomography: 10-year results from two Dutch hospitals",
European Radiology,
2023;33:8279-8288.
G. Sidorenkov, R. Stadhouders, C. Jacobs, F. Mohamed Hoesein, H. Gietema, K. Nackaerts, Z. Saghir, M. Heuvelmans, H. Donker, J. Aerts, R. Vermeulen, A. Uitterlinden, V. Lenters, J. van Rooij, C. Schaefer-Prokop, H. Groen, P. de Jong, R. Cornelissen, M. Prokop, G. de Bock and R. Vliegenthart, "Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial.",
European journal of epidemiology,
2023;38(4):445-454.
W. Xie, C. Jacobs, J. Charbonnier and B. van Ginneken, "Dense regression activation maps for lesion segmentation in CT scans of COVID-19 patients",
Medical Image Analysis,
2023;86:102771.
G. Mamani, N. Lessmann, E. Scholten, M. Prokop, C. Jacobs and B. van Ginneken, "Kidney abnormality segmentation in thorax-abdomen CT scans",
arXiv:2309.03383,
2023.
G. Humpire-Mamani, C. Jacobs, M. Prokop, B. van Ginneken and N. Lessmann, "Transfer learning from a sparsely annotated dataset of 3D medical images",
arXiv:2311.05032,
2023.
J.S. Bosma, D. Peeters, N. Alves, A. Saha, Z. Saghir, C. Jacobs and H. Huisman, "Reproducibility of Training Deep Learning Models for Medical Image Analysis",
Medical Imaging with Deep Learning,
2023.
D. Peeters, N. Alves, K. Venkadesh, R. Dinnessen, Z. Saghir, E. Scholten, H. Huisman, C. Schaefer-Prokop, R. Vliegenthart, M. Prokop and C. Jacobs, "The effect of applying an uncertainty estimation method on the performance of a deep learning model for nodule malignancy risk estimation",
European Congress of Radiology,
2023.
N. Antonissen, K. Venkadesh, H. Gietema, R. Vliegenthart, Z. Saghir, M. Silva, E. Pastorino, E. Scholten, M. Prokop, C. Schaefer-Prokop and C. Jacobs, "Retrospective identification of low-risk individuals eligible for biennial lung cancer screening using PanCan-based and deep learning-based risk thresholds",
Annual Meeting of the European Society of Thoracic Imaging,
2023.
N. Antonissen, K. Venkadesh, H. Gietema, R. Vliegenthart, Z. Saghir, E. Scholten, M. Prokop, C. Schaefer-Prokop and C. Jacobs, "Retrospective validation of nodule management based on deep learning-based malignancy thresholds in lung cancer screening",
European Congress of Radiology,
2023.