Publications

2025

Papers in international journals

  1. M. Tran, P. Schmidle, R. Guo, S. Wagner, V. Koch, V. Lupperger, B. Novotny, D. Murphree, H. Hardway, M. D'Amato, J. Lefkes, D. Geijs, A. Feuchtinger, A. Böhner, R. Kaczmarczyk, T. Biedermann, A. Amir, A. Mooyaart, F. Ciompi, G. Litjens, C. Wang, N. Comfere, K. Eyerich, S. Braun, C. Marr and T. Peng, "Generating dermatopathology reports from gigapixel whole slide images with HistoGPT", Nature Communications, 2025;16.
    Abstract DOI PMID
  2. M. Schuurmans, A. Saha, N. Alves, P. Vendittelli, D. Yakar, S. Sabroso-Lasa, N. Xue, N. Malats, H. Huisman, J. Hermans and G. Litjens, "End-to-end prognostication in pancreatic cancer by multimodal deep learning: a retrospective, multicenter study", European Radiology, 2025.
    Abstract DOI PMID
  3. R. Volleberg, R. van der Waerden, T. Luttikholt, J. van der Zande, P. Cancian, X. Gu, J. Mol, S. Quax, M. Prokop, C. Sánchez, B. van Ginneken, I. Isgum, J. Thannhauser, S. Saitta, K. Nishimiya, T. Roleder and N. van Royen, "Comprehensive full-vessel segmentation and volumetric plaque quantification for intracoronary optical coherence tomography using deep learning", European Heart Journal - Digital Health, 2025;6:404-416.
    Abstract DOI PMID
  4. J.S. Bosma, K. Dercksen, L. Builtjes, R. André, C. Roest, S. Fransen, C. Noordman, M. Navarro-Padilla, J. Lefkes, N. Alves, M. de Grauw, L. van Eekelen, J. Spronck, M. Schuurmans, B. de Wilde, W. Hendrix, W. Aswolinskiy, A. Saha, J. Twilt, D. Geijs, J. Veltman, D. Yakar, M. de Rooij, F. Ciompi, A. Hering, J. Geerdink, H. Huisman, O. behalf of the consortium, M. de Grauw, L. van Eekelen, B. de Wilde, Q. van Lohuizen, M. Stegeman, K. Rutten, I. Smit, G. Stultiens, C. Overduin, M. Rutten, E. Scholten, R. van der Post, K. Grünberg, S. Vos, E. Taken, I. Nagtegaal, A. Mickan, M. Groeneveld, P. Gerke, J. Meakin, M. Looijen-Salamon, T. de Haas, F. Hoitsma, M. D'Amato and M. de Rooij, "The DRAGON benchmark for clinical NLP", npj Digital Medicine, 2025;8.
    Abstract DOI PMID
  5. T. Haddad, J. Bokhorst, L. van den Dobbelsteen, S. Öztürk, E. Baumann, S. van Vliet, K. Verrijp, N. Jamieson, C. Wood, M. Berger, R. Kirsch, M. Aben, N. Rutgers, H. Ueno, F. Ciompi, F. Simmer, J. van der Laak, A. Lugli, I. Zlobec and I. Nagtegaal, "Tumor budding and poorly differentiated clusters as a biological continuum in colorectal cancer invasion and prognosis", Scientific Reports, 2025;15.
    Abstract DOI PMID
  6. N. Rodrigues, J. de Almeida, A. Verde, A. Gaivão, C. Bireiro, I. Santiago, J. Ip, S. Belião, C. Matos, L. Vanneschi, M. Tsiknakis, K. Marias, D. Regge, S. Silva, T. Consortium, M. Tsiknakis, K. Marias, S. Sfakianakis, V. Kalokyri, E. Trivizakis, G. Kalliatakis, A. Dimitriadis, D. Fotiadis, N. Tachos, E. Mylona, D. Zaridis, C. Kalantzopoulos, N. Papanikolaou, J. de Almeida, A. Verde, A. Rodrigues, N. Rodrigues, M. Chambel, H. Huisman, M. Rooij, A. Saha, J. Twilt, J. Futterer, L. Martí-Bonmatí, L. Cerdá-Alberich, G. Ribas, S. Navarro, M. Marfil, E. Neri, G. Aringhieri, L. Tumminello, V. Mendola, D. Akata, M. Özmen, A. Karaosmanoglu, F. Atak, M. Karcaaltincaba, J. Vilanova, J. Usinskiene, R. Briediene, A. Untanas, K. Slidevska, K. Vasilis, G. Georgios, D. Koh, R. Emsley, S. Vit, A. Ribeiro, S. Doran, T. Jacobs, G. García-Martí, D. Regge, V. Giannini, S. Mazzetti, G. Cappello, G. Maimone, V. Napolitano, S. Colantonio, M. Pascali, E. Pachetti, G. Corso, D. Germanese, A. Berti, G. Carloni, J. Kalpathy-Cramer, C. Bridge, J. Correia, W. Hernandez, Z. Giavri, C. Pollalis, D. Agraniotis, A. Pastor, J. Mora, C. Saillant, T. Henne, R. Marquez and N. Papanikolaou, "Effective reduction of unnecessary biopsies through a deep-learning-assisted aggressive prostate cancer detector", Scientific Reports, 2025;15.
    Abstract DOI PMID
  7. B. Turkbey, H. Huisman, A. Fedorov, K. Macura, D. Margolis, V. Panebianco, A. Oto, I. Schoots, M. Siddiqui, C. Moore, O. Rouvière, L. Bittencourt, A. Padhani, C. Tempany and M. Haider, "Requirements for AI Development and Reporting for MRI Prostate Cancer Detection in Biopsy-Naive Men: PI-RADS Steering Committee, Version 1.0", Radiology, 2025;315.
    Abstract DOI PMID
  8. T. Luttikholt, J. Thannhauser and N. van Royen, "Detection of large areas of thin-cap fibroatheroma in a recurrent STEMI patient using a novel artificial intelligence algorithm: moving from 2D to 3D", European Heart Journal, 2025.
    Abstract DOI PMID
  9. A. Farris, J. van der Laak and D. van Midden, "Artificial intelligence-enhanced interpretation of kidney transplant biopsy: focus on rejection", Current Opinion in Organ Transplantation, 2025.
    Abstract DOI PMID
  10. W. Hendrix, N. Hendrix, E. Scholten, B. van Ginneken, M. Prokop, M. Rutten and C. Jacobs, "Artificial intelligence for the detection of airway nodules in chest CT scans", European Radiology, 2025.
    Abstract DOI PMID
  11. C. Roest, T. Kwee, I. de Jong, I. Schoots, P. van Leeuwen, S. Heijmink, H. van der Poel, S. Fransen, A. Saha, H. Huisman and D. Yakar, "Development and Validation of a Deep Learning Model Based on MRI and Clinical Characteristics to Predict Risk of Prostate Cancer Progression", Radiology: Imaging Cancer, 2025;7.
    Abstract DOI PMID
  12. D. van Midden, L. Studer, M. Hermsen, E. Steenbergen, J. Kers, N. Kozakowski, Z. Kikic, L. Hilbrands and J. van der Laak, "Deep learning-based histopathologic segmentation of peritubular capillaries in kidney transplant biopsies", Computers in biology and medicine, 2025;193:110395.
    Abstract DOI
  13. R. van der Waerden, R. Volleberg, T. Luttikholt, P. Cancian, J. van der Zande, G. Stone, N. Holm, E. Kedhi, J. Escaned, D. Pellegrini, G. Guagliumi, S. Mehta, N. Pinilla-Echeverri, R. Moreno, L. Räber, T. Roleder, B. van Ginneken, C. Sánchez, I. Isgum, N. van Royen and J. Thannhauser, "Artificial intelligence for the analysis of intracoronary optical coherence tomography images: a systematic review", European Heart Journal - Digital Health, 2025.
    Abstract DOI
  14. D. Peeters, K. Venkadesh, R. Dinnessen, Z. Saghir, E. Scholten, R. Vliegenthart, M. Prokop and C. Jacobs, "Towards safe and reliable deep learning for lung nodule malignancy estimation using out-of-distribution detection", Computers in Biology and Medicine, 2025;186:109633.
    Abstract DOI
  15. L. Thijssen, M. de Rooij and H. Huisman, "External validation of automated prostate MR T2-weighted image quality assessment on multi-centre multi-vendor data", European Journal of Radiology Artificial Intelligence, 2025;1:100002.
    Abstract DOI
  16. H. Long, L. Hu, L. Wei, L. Dai, C. Fu, Y. Lu, C. Xu, Z. Hu, L. Wang, Z. Xu, R. Grimm, H. Busch, T. Benkert, A. Kamen, B. Lou, H. Huisman, A. Tong, T. Penzkofer, M. Choi, I. Shabunin, D. Winkel, P. Xing, D. Szolar, F. Coakley, S. Shea, E. Szurowska, W. Zhu and J. Zhao, "Improved prostate cancer diagnosis: upgraded prostate imaging reporting and data system (PI-RADS) scores by zoomed diffusion-weighted imaging enhance deep-learning-based computer-aided diagnosis accuracy", Quantitative Imaging in Medicine and Surgery, 2025;15:2132-2145.
    Abstract DOI
  17. Q. Lohuizen, S. Fransen, G. Yiasemis, C. Roest, F. Simonis, T. Kwee, D. Yakar and H. Huisman, "Deep learning reconstruction for prostate MRI: Impact of field-of-view selection on global and regional image quality", European Journal of Radiology Artificial Intelligence, 2025;2:100017.
    Abstract DOI

Preprints

  1. W. Heyer, Y. Elser, L. Berkel, X. Song, X. Xu, P. Yan, X. Jia, J. Duan, Z. Li, T. Mok, B. LI, C. Staackmann, C. Gro\ssbr öhmer, L. Hansen, A. Hering, M. Sieren and M. Heinrich, "OncoReg: Medical Image Registration for Oncological Challenges", arXiv:2503.23179, 2025.
    Abstract DOI arXiv
  2. P. Cancian, S. Saitta, X. Gu, R. van Herten, T. Luttikholt, J. Thannhauser, R. Volleberg, R. van der Waerden, J. van der Zande, C. Sánchez, B. van Ginneken, N. van Royen and I. Isgum, "Attenuation artifact detection and severity classification in intracoronary OCT using mixed image representations", arXiv:2503.05322, 2025.
    Abstract DOI arXiv
  3. Y. Wang, T. Chen, S. Vinayahalingam, T. Wu, C. Chang, H. Chang, H. Wei, M. Chen, C. Ko, D. Moin, B. van Ginneken, T. Xi, H. Tsai, M. Chen, T. Hsu and H. Chou, "Artificial Intelligence to Assess Dental Findings from Panoramic Radiographs -- A Multinational Study", arXiv:2502.10277, 2025.
    Abstract DOI arXiv
  4. S. Sun, D. van Midden, G. Litjens and C. Baumgartner, "Prototype-Based Multiple Instance Learning for Gigapixel Whole Slide Image Classification", arXiv:2503.08384, 2025.
    Abstract DOI arXiv
  5. A. Jiménez-Sánchez, N. Avlona, S. de Boer, V. Campello, A. Feragen, E. Ferrante, M. Ganz, J. Gichoya, C. González, S. Groefsema, A. Hering, A. Hulman, L. Joskowicz, D. Juodelyte, M. Kandemir, T. Kooi, J. Lérida, L. Li, A. Pacheco, T. Rädsch, M. Reyes, T. Sourget, B. van Ginneken, D. Wen, N. Weng, J. Xu, H. Zając, M. Zuluaga and V. Cheplygina, "In the Picture: Medical Imaging Datasets, Artifacts, and their Living Review", arXiv:2501.10727, 2025.
    Abstract DOI arXiv
  6. S. Sun, L. Tessier, F. Meeuwsen, C. Grisi, D. van Midden, G. Litjens and C. Baumgartner, "Label-free Concept Based Multiple Instance Learning for Gigapixel Histopathology", arXiv:2501.02922, 2025.
    Abstract DOI arXiv
  7. M. van Rijthoven, W. Aswolinskiy, L. Tessier, M. Balkenhol, J. Bogaerts, D. Drubay, L. Blesa, D. Peeters, E. Stovgaard, A. L\aenkholm , H. Haynes, L. Craciun, D. Larsimont, M. Amgad, L. Cooper, C. de Kock, V. Dechering, J. Lotz, N. Weiss, M. van Bockstal, C. Galant, E. Lips, H. Horlings, J. Wesseling, L. Mulder, S. van den Belt, K. Weber, P. Jank, C. Denkert, E. Munari, G. Bogina, C. Russ, A. Lemm, S. Loi, J. Douglas, S. Michiels, H. Joensuu, M. Fan, D. Lee, J. Ye, K. Byun, J. Kim, S. Xu, Z. Ji, F. Xie, J. Kuang, X. Chen, L. Chen, A. Tsakiroglou, R. Byers, M. Fergie, V. Ramanathan, A. Martel, A. Shephard, S. Ahmed Raza, M. Jahanifar, N. Rajpoot, S. Cho, D. Kim, H. Jang, C. Park, K. Kim, R. Donders, S. Maurits, M. Groeneveld, A. Mickan, J. Meakin, B. van Ginneken, R. Salgado, J. van der Laak and F. Ciompi, "Tumor-infiltrating lymphocytes in breast cancer through artificial intelligence: biomarker analysis from the results of the TIGER challenge", medRxiv, 2025.
    Abstract DOI
  8. J. Chen, S. Wei, J. Honkamaa, P. Marttinen, H. Zhang, M. Liu, Y. Zhou, Z. Tan, Z. Wang, Y. Wang, H. Zhou, S. Hu, Y. Zhang, Q. Tao, L. Förner, T. Wendler, B. Jian, B. Wiestler, T. Hable, J. Kim, D. Ruan, F. Madesta, T. Sentker, W. Heyer, L. Zuo, Y. Dai, J. Wu, J. Prince, H. Bai, Y. Du, Y. Liu, A. Hering, R. Dorent, L. Hansen, M. Heinrich and A. Carass, "Beyond the LUMIR challenge: The pathway to foundational registration models", arXiv:2505.24160, 2025.
    Abstract DOI arXiv
  9. M. D'Amato, J. van der Laak and F. Ciompi, ""No negatives needed": weakly-supervised regression for interpretable tumor detection in whole-slide histopathology images", arXiv:2502.21109, 2025.
    Abstract DOI arXiv

Papers in conference proceedings

  1. C. Lems, N. Klubíčková, B. Brattoli, T. Lee, S. Kim, V. Besler, P. Fernandez, L. Pons, A. Laurinavicius, J. Drachneris, D. Montezuma, D. Oliveira, S. Vos, M. Balkenhol, J. van Ipenburg, A. Vos, M. Poceviciute, N. Khalili and F. Ciompi, "Towards a multicentric open DigitAL PatHology assIstant beNchmark: Initial Results from the DALPHIN Study", Laboratory Investigation, 2025;105:103609.
    Abstract DOI
  2. G. Lozupone, A. Bria, F. Fontanella, F. Meijer, C. Stefano and H. Huisman, "Latent Diffusion Autoencoders: Toward Efficient and Meaningful Unsupervised Representation Learning in Medical Imaging", 2025.
    Abstract DOI
  3. J. Lefkes, M. D'Amato, S. Sun, G. Litjens and F. Ciompi, "Large Language Models Automate Diagnostic Conclusions Generation from Microscopic Descriptions in Multiple Cancer Types", Laboratory Investigation, 2025;105:103608.
    Abstract DOI
  4. N. Khalili, J. Spronck, F. Ciompi, J. der Van Laak and G. Litjens, "A human-in-the-loop framework for refining deep learning models in pathology segmentation", Medical Imaging 2025: Digital and Computational Pathology, 2025:21.
    Abstract DOI
  5. J. Lefkes, C. Grisi and G. Litjens, "A Balancing Act: Optimizing Classification and Retrieval in Cross-Modal Vision Models", Medical Imaging with Deep Learning, 2025.
    Abstract Url
  6. C. de Vente, K. Venkadesh, B. van Ginneken and C. S'anchez, "SlicerNNInteractive: A 3D Slicer extension for nnInteractive", 2025.
    Abstract Url
  7. X. Pham, M. Prokop, B. van Ginneken and A. Hering, "Divide to conquer: a field decomposition approach for multi-organ whole-body CT image registration", Medical Imaging 2025: Image Processing, 2025:48.
    Abstract DOI

Abstracts

  1. D. Peeters, B. Obreja, N. Antonissen, R. Dinnessen, Z. Saghir, E. Scholten, R. Vliegenthart, M. Prokop and C. Jacobs, "Benchmarking of Artificial Intelligence and Radiologists for Lung Cancer Screening in CT: The LUNA25 Challenge", European Congress of Radiology, 2025.
    Abstract
  2. N. Antonissen, I. Houben, O. Tryfonos, M. De Rooij and K. Van Leeuwen, "Evolution of commercially available artificial intelligence in radiology: a follow-up on peer-reviewed evidence of 179 products", European Congress of Radiology, 2025.
    Abstract

PhD theses

  1. J. van der Graaf, "AI-driven MRI analysis for low back pain management", PhD thesis, 2025.
    Abstract Url
  2. H. Pinckaers, "Prognostic modeling for prostate cancer patients using gigapixel-sized images", PhD thesis, 2025.
    Abstract Url
  3. E. Markus-Smeets, "Build bridges to break barriers: Using quantitative imaging to understand pancreas tumor biology", PhD thesis, 2025.
    Abstract Url
  4. L. Boulogne, "Accelerating research on 3D medical image classification and regression", PhD thesis, 2025.
    Abstract Url
  5. J. Linmans, "Uncertainty estimation in digital pathology: Towards applying artificial intelligence in an uncertain clinical world", PhD thesis, 2025.
    Abstract Url