M. Schuurmans, A. Saha, N. Alves, P. Vendittelli, D. Yakar, S. Sabroso-Lasa, N. Xue, N. Malats, H. Huisman, J. Hermans and G. Litjens, "End-to-end prognostication in pancreatic cancer by multimodal deep learning: a retrospective, multicenter study",
European Radiology,
2025.
J.S. Bosma, K. Dercksen, L. Builtjes, R. André, C. Roest, S. Fransen, C. Noordman, M. Navarro-Padilla, J. Lefkes, N. Alves, M. de Grauw, L. van Eekelen, J. Spronck, M. Schuurmans, B. de Wilde, W. Hendrix, W. Aswolinskiy, A. Saha, J. Twilt, D. Geijs, J. Veltman, D. Yakar, M. de Rooij, F. Ciompi, A. Hering, J. Geerdink, H. Huisman, O. behalf of the consortium, M. de Grauw, L. van Eekelen, B. de Wilde, Q. van Lohuizen, M. Stegeman, K. Rutten, I. Smit, G. Stultiens, C. Overduin, M. Rutten, E. Scholten, R. van der Post, K. Grünberg, S. Vos, E. Taken, I. Nagtegaal, A. Mickan, M. Groeneveld, P. Gerke, J. Meakin, M. Looijen-Salamon, T. de Haas, F. Hoitsma, M. D'Amato and M. de Rooij, "The DRAGON benchmark for clinical NLP",
npj Digital Medicine,
2025;8.
D. Peeters, N. Alves, K. Venkadesh, R. Dinnessen, Z. Saghir, E. Scholten, C. Schaefer-Prokop, R. Vliegenthart, M. Prokop and C. Jacobs, "Enhancing a deep learning model for pulmonary nodule malignancy risk estimation in chest CT with uncertainty estimation",
European Radiology,
2024;34:6639-6651.
T. Perik, N. Alves, J. Hermans and H. Huisman, "Automated Quantitative Analysis of CT Perfusion to Classify Vascular Phenotypes of Pancreatic Ductal Adenocarcinoma",
Cancer,
2024;16(3):577.
N. Alves, J.S. Bosma, K. Venkadesh, C. Jacobs, Z. Saghir, M. de Rooij, J. Hermans and H. Huisma, "Erratum for: Prediction Variability to Identify Reduced AI Performance in Cancer Diagnosis at MRI and CT",
Radiology,
2023;309.
N. Alves, J.S. Bosma, K. Venkadesh, C. Jacobs, Z. Saghir, M. de Rooij, J. Hermans and H. Huisman, "Prediction Variability to Identify Reduced AI Performance in Cancer Diagnosis at MRI and CT",
Radiology,
2023;308(3):e230275.
M. Schuurmans, N. Alves, P. Vendittelli, H. Huisman and J. Hermans, "Artificial Intelligence in Pancreatic Ductal Adenocarcinoma Imaging: A Commentary on Potential Future Applications.",
Gastroenterology,
2023.
M. Schuurmans, N. Alves, P. Vendittelli, H. Huisman and J. Hermans, "Setting the Research Agenda for Clinical Artificial Intelligence in Pancreatic Adenocarcinoma Imaging",
Cancers,
2022:3498.
N. Alves, M. Schuurmans, G. Litjens, J.S. Bosma, J. Hermans and H. Huisman, "Fully Automatic Deep Learning Framework for Pancreatic Ductal Adenocarcinoma Detection on Computed Tomography",
Cancers,
2022:376.
J.S. Bosma, D. Peeters, N. Alves, A. Saha, Z. Saghir, C. Jacobs and H. Huisman, "Reproducibility of Training Deep Learning Models for Medical Image Analysis",
Medical Imaging with Deep Learning,
2023.
N. Alves and B. de Wilde, "Uncertainty-Guided Self-learning Framework for Semi-supervised Multi-organ Segmentation",
Fast and Low-Resource Semi-supervised Abdominal Organ Segmentation,
2022:116-127.
D. Peeters, N. Alves, K. Venkadesh, R. Dinnessen, Z. Saghir, E. Scholten, H. Huisman, C. Schaefer-Prokop, R. Vliegenthart, M. Prokop and C. Jacobs, "The effect of applying an uncertainty estimation method on the performance of a deep learning model for nodule malignancy risk estimation",
European Congress of Radiology,
2023.
S. de Jong, N. Alves, M. Schuurmans, J. Hermans and H. Huisman, "Deep Learning for Automatic Contrast Enhancement Phase Detection on Abdominal Computed Tomography",
Annual Meeting of the Radiological Society of North America,
2022.
J.S. Bosma, N. Alves and H. Huisman, "Performant and Reproducible Deep Learning Based Cancer Detection Models for Medical Imaging",
Annual Meeting of the Radiological Society of North America,
2022.
N. Alves, J.S. Bosma and H. Huisman, "Towards Safe Clinical Use of Artificial Intelligence for Cancer Detection Through Uncertainty Quantification",
Annual Meeting of the Radiological Society of North America,
2022.
N. Alves, J. Hermans and H. Huisman, "CT-based Deep Learning Towards Early Detection Of Pancreatic Ductal Adenocarcinoma",
Annual Meeting of the Radiological Society of North America,
2021.