Publications
2021
Papers in international journals
- S. Zhou, H. Greenspan, C. Davatzikos, J. Duncan, B. Van Ginneken, A. Madabhushi, J. Prince, D. Rueckert and R. Summers, "A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises", Proceedings of the IEEE, 2021;109:820-838.
- C. González-Gonzalo, E. Thee, C. Klaver, A. Lee, R. Schlingemann, A. Tufail, F. Verbraak and C. Sánchez, "Trustworthy AI: Closing the gap between development and integration of AI systems in ophthalmic practice", Progress in Retinal and Eye Research, 2021.
- C. Jacobs, A. Setio, E. Scholten, P. Gerke, H. Bhattacharya, F. M. Hoesein, M. Brink, E. Ranschaert, P. de Jong, M. Silva, B. Geurts, K. Chung, S. Schalekamp, J. Meersschaert, A. Devaraj, P. Pinsky, S. Lam, B. van Ginneken and K. Farahani, "Deep Learning for Lung Cancer Detection in Screening CT Scans: Results of a Large-Scale Public Competition and an Observer Study with 11 Radiologists", Radiology: Artificial Intelligence, 2021;3(6):e210027.
- M. Yousif, P. van Diest, A. Laurinavicius, D. Rimm, J. van der Laak, A. Madabhushi, S. Schnitt and L. Pantanowitz, "Artificial intelligence applied to breast pathology", Virchows Archiv, 2021;480:191-209.
- N. Harlianto, N. Oosterhof, W. Foppen, M. Hol, R. Wittenberg, P. van der Veen, B. van Ginneken, F. Mohamed Hoesein, J. Verlaan, P. de Jong, J. Westerink, R. van Petersen, B. van Dinther, F. Asselbergs, H. Nathoe, G. de Borst, M. Bots, M. Geerlings, M. Emmelot, P. de Jong, T. Leiner, A. Lely, N. van der Kaaij, L. Kappelle, Y. Ruigrok, M. Verhaar, F. Visseren, J. Westerink and F. the UCC-SMART-Studygroup, "Diffuse idiopathic skeletal hyperostosis is associated with incident stroke in patients with increased cardiovascular risk", Rheumatology, 2021;61:2867-2874.
- L. van Eekelen, H. Pinckaers, M. van den Brand, K. Hebeda and G. Litjens, "Using deep learning for quantification of cellularity and cell lineages in bone marrow biopsies and comparison to normal age-related variation.", Pathology, 2021.
- A. van der Eerden, T. van den Heuvel, M. Maas, P. Vart, P. Vos, B. Platel, B. Góraj and R. Manniesing, "The radiological interpretation of possible microbleeds after moderate or severe traumatic brain injury: a longitudinal study", Neuroradiology, 2021;64:1145-1156.
- C. Jacobs, A. Schreuder, S. van Riel, E. Scholten, R. Wittenberg, M. Winkler Wille, B. de Hoop, R. Sprengers, O. Mets, B. Geurts, M. Prokop, C. Schaefer-Prokop and B. van Ginneken, "Assisted versus Manual Interpretation of Low-Dose CT Scans for Lung Cancer Screening: Impact on Lung-RADS Agreement", Radiology: Imaging Cancer, 2021;3(5):e200160.
- M. Dekker, F. Waissi, M. Silvis, J. Bennekom, A. Schoneveld, R. de Winter, I. Isgum, N. Lessmann, B. Velthuis, G. Pasterkamp, A. Mosterd, L. Timmers and D. de Kleijn, "High Levels of Osteoprotegerin Are Associated with Coronary Artery Calcification in Patients Suspected of a Chronic Coronary Syndrome", Scientific Reports, 2021;11(1):18946.
- M. Golatta, A. Pfob, C. Büsch, T. Bruckner, Z. Alwafai, C. Balleyguier, D. Clevert, V. Duda, M. Goncalo, I. Gruber, M. Hahn, P. Kapetas, R. Ohlinger, M. Rutten, M. Tozaki, S. Wojcinski, G. Rauch, J. Heil and R. Barr, "The Potential of Shear Wave Elastography to Reduce Unnecessary Biopsies in Breast Cancer Diagnosis: An International, Diagnostic, Multicenter Trial", Ultraschall in der Medizin - European Journal of Ultrasound, 2021;44:162-168.
- J. Rutgers, T. Bánki, A. van der Kamp, T. Waterlander, M. Scheijde-Vermeulen, M. van den Heuvel-Eibrink, J. van der Laak, M. Fiocco, A. Mavinkurve-Groothuis and R. de Krijger, "Interobserver variability between experienced and inexperienced observers in the histopathological analysis of Wilms tumors: a pilot study for future algorithmic approach", Diagnostic Pathology, 2021;16.
- K. Kartasalo, W. Bulten, B. Delahunt, P. Chen, H. Pinckaers, H. Olsson, X. Ji, N. Mulliqi, H. Samaratunga, T. Tsuzuki, J. Lindberg, M. Rantalainen, C. Wahlby, G. Litjens, P. Ruusuvuori, L. Egevad and M. Eklund, "Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer in Biopsies-Current Status and Next Steps.", European Urology Focus, 2021;7(4):687-691.
- S. Youn, M. Choi, D. Kim, Y. Lee, H. Huisman, E. Johnson, T. Penzkofer, I. Shabunin, D. Winkel, P. Xing, D. Szolar, R. Grimm, H. von Busch, Y. Son, B. Lou and A. Kamen, "Detection and PI-RADS classification of focal lesions in prostate MRI: Performance comparison between a deep learning-based algorithm (DLA) and radiologists with various levels of experience", European Journal of Radiology, 2021;142:109894.
- L. Kerschke, S. Weigel, A. Rodriguez-Ruiz, N. Karssemeijer and W. Heindel, "Using deep learning to assist readers during the arbitration process: a lesion-based retrospective evaluation of breast cancer screening performance", European Radiology, 2021;32:842-852.
- A. Turan, S. Jenniskens, J. Martens, M. Rutten, L. Yo, M. van Strijen, J. Drenth, P. Siersema and E. van Geenen, "Complications of percutaneous transhepatic cholangiography and biliary drainage, a multicenter observational study", Abdominal Radiology, 2021;47:3338-3344.
- N. Harlianto, J. Westerink, W. Foppen, M. Hol, R. Wittenberg, P. van der Veen, B. van Ginneken, J. Kuperus, J. Verlaan, P. de Jong, F. Mohamed Hoesein and O. behalf of the Group, "Visceral Adipose Tissue and Different Measures of Adiposity in Different Severities of Diffuse Idiopathic Skeletal Hyperostosis", Journal of Personalized Medicine, 2021;11:663.
- G. Bortsova, C. González-Gonzalo, S. Wetstein, F. Dubost, I. Katramados, L. Hogeweg, B. Liefers, B. van Ginneken, J. Pluim, M. Veta, C. Sánchez and M. de Bruijne, "Adversarial Attack Vulnerability of Medical Image Analysis Systems: Unexplored Factors", Medical Image Analysis, 2021:102141.
- J. Slaats, C. Dieteren, E. Wagena, L. Wolf, T. Raaijmakers, J. van der Laak, C. Figdor, B. Weigelin and P. Friedl, "Metabolic Screening of Cytotoxic T-cell Effector Function Reveals the Role of CRAC Channels in Regulating Lethal Hit Delivery", Cancer Immunology Research, 2021;9:926-938.
- A. Schreuder, M. Prokop, E. Scholten, O. Mets, K. Chung, F. Mohamed Hoesein, C. Jacobs and C. Schaefer-Prokop, "CT-Detected Subsolid Nodules: A Predictor of Lung Cancer Development at Another Location?", Cancers, 2021;13(11):2812.
- E. Calli, E. Sogancioglu, B. van Ginneken, K. van Leeuwen and K. Murphy, "Deep learning for chest X-ray analysis: A survey", Medical Image Analysis, 2021;72:102125.
- A. Schreuder, E. Scholten, B. van Ginneken and C. Jacobs, "Artificial intelligence for detection and characterization of pulmonary nodules in lung cancer CT screening: ready for practice?", Translational Lung Cancer Research, 2021;10(5):2378-2388.
- A. Snoeckx, C. Franck, M. Silva, M. Prokop, C. Schaefer-Prokop and M. Revel, "The radiologist's role in lung cancer screening", Translational Lung Cancer Research, 2021;10:2356-2367.
- E. Munari, M. Marconi, G. Querzoli, G. Lunardi, P. Bertoglio, F. Ciompi, A. Tosadori, A. Eccher, N. Tumino, L. Quatrini, P. Vacca, G. Rossi, A. Cavazza, G. Martignoni, M. Brunelli, G. Netto, L. Moretta, G. Zamboni and G. Bogina, "Impact of PD-L1 and PD-1 Expression on the Prognostic Significance of CD8+, Tumor-Infiltrating Lymphocytes in Non-Small Cell Lung Cancer.", Frontiers in immunology, 2021;12:680973.
- J. Twilt, K. van Leeuwen, H. Huisman, J. Fütterer and M. de Rooij, "Artificial Intelligence Based Algorithms for Prostate Cancer Classification and Detection on Magnetic Resonance Imaging: A Narrative Review", Diagnostics, 2021;11:959.
- E. Munari, F. Mariotti, L. Quatrini, P. Bertoglio, N. Tumino, P. Vacca, A. Eccher, F. Ciompi, M. Brunelli, G. Martignoni, G. Bogina and L. Moretta, "PD-1/PD-L1 in Cancer: Pathophysiological, Diagnostic and Therapeutic Aspects.", International journal of molecular sciences, 2021;22(10).
- E. van Kempen, M. Post, M. Mannil, R. Witkam, M. ter Laan, A. Patel, F. Meijer and D. Henssen, "Performance of machine learning algorithms for glioma segmentation of brain MRI: a systematic literature review and meta-analysis", European Radiology, 2021;31:9638-9653.
- J. Colijn, B. Liefers, N. Joachim, T. Verzijden, M. Meester-Smoor, M. Biarnés, J. Monés, P. de Jong, J. Vingerling, P. Mitchell, C. Sánchez, J. Wang, C. Klaver, E. Center and E. Consortium, "Enlargement of Geographic Atrophy From First Diagnosis to End of Life", JAMA Ophthalmology, 2021;139:743.
- M. Hermsen, V. Volk, J. Brasen, D. Geijs, W. Gwinner, J. Kers, J. Linmans, N. Schaadt, J. Schmitz, E. Steenbergen, Z. Swiderska-Chadaj, B. Smeets, L. Hilbrands and J. van der Laak, "Quantitative assessment of inflammatory infiltrates in kidney transplant biopsies using multiplex tyramide signal amplification and deep learning", Laboratory Investigation, 2021;101(8):970-982.
- K. Venkadesh, A. Setio, A. Schreuder, E. Scholten, K. Chung, M. W Wille, Z. Saghir, B. van Ginneken, M. Prokop and C. Jacobs, "Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT.", Radiology, 2021;300(2):438-447.
- T. Penzkofer, A. Padhani, B. Turkbey, M. Haider, H. Huisman, J. Walz, G. Salomon, I. Schoots, J. Richenberg, G. Villeirs, V. Panebianco, O. Rouviere, V. Logager and J. Barentsz, "ESUR/ESUI position paper: developing artificial intelligence for precision diagnosis of prostate cancer using magnetic resonance imaging.", European Radiology, 2021.
- J. van der Laak, G. Litjens and F. Ciompi, "Deep learning in histopathology: the path to the clinic.", Nature Medicine, 2021;27(5):775-784.
- B. de Vos, N. Lessmann, P. de Jong and I. Isgum, "Deep Learning-Quantified Calcium Scores for Automatic Cardiovascular Mortality Prediction at Lung Screening Low-Dose CT", Radiology: Cardiothoracic Imaging, 2021;3(2):e190219.
- R. Gal, S. van Velzen, M. Hooning, M. Emaus, F. van der Leij, M. Gregorowitsch, E. Blezer, S. Gernaat, N. Lessmann, M. Sattler, T. Leiner, P. de Jong, A. Teske, J. Verloop, J. Penninkhof, I. Vaartjes, H. Meijer, J. van Tol-Geerdink, J. Pignol, D. van den Bongard, I. Isgum and H. Verkooijen, "Identification of Risk of Cardiovascular Disease by Automatic Quantification of Coronary Artery Calcifications on Radiotherapy Planning CT Scans in Patients With Breast Cancer", JAMA Oncology, 2021;7(7):1024-1032.
- S. van Winkel, A. Rodríguez-Ruiz, L. Appelman, A. Gubern-Mérida, N. Karssemeijer, J. Teuwen, A. Wanders, I. Sechopoulos and R. Mann, "Impact of artificial intelligence support on accuracy and reading time in breast tomosynthesis image interpretation: a multi-reader multi-case study", European Radiology, 2021;31:8682-8691.
- A. Afshar-Oromieh, H. Prosch, C. Schaefer-Prokop, K. Bohn, I. Alberts, C. Mingels, M. Thurnher, P. Cumming, K. Shi, A. Peters, S. Geleff, X. Lan, F. Wang, A. Huber, C. Gräni, J. Heverhagen, A. Rominger, M. Fontanellaz, H. Schöder, A. Christe, S. Mougiakakou and L. Ebner, "A comprehensive review of imaging findings in COVID-19 - status in early 2021", European Journal of Nuclear Medicine and Molecular Imaging, 2021;48:2500-2524.
- J. Teuwen, N. Moriakov, C. Fedon, M. Caballo, I. Reiser, P. Bakic, E. García, O. Diaz, K. Michielsen and I. Sechopoulos, "Deep learning reconstruction of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose estimation", Medical Image Analysis, 2021;71:102061.
- A. Schreuder, O. Mets, C. Schaefer-Prokop, C. Jacobs and M. Prokop, "Microsimulation modeling of extended annual CT screening among lung cancer cases in the National Lung Screening Trial", Lung Cancer, 2021;156:5-11.
- K. van Leeuwen, S. Schalekamp, M. Rutten, B. van Ginneken and M. de Rooij, "Artificial intelligence in radiology: 100 commercially available products and their scientific evidence", European Radiology, 2021;31:3797-3804.
- M. Caballo, A. Hernandez, S. Lyu, J. Teuwen, R. Mann, B. van Ginneken, J. Boone and I. Sechopoulos, "Computer-aided diagnosis of masses in breast computed tomography imaging: deep learning model with combined handcrafted and convolutional radiomic features", Journal of Medical Imaging, 2021;8.
- A. Schreuder and C. Schaefer-Prokop, "Beyond the AJR: "Association of the Intensity of Diagnostic Evaluation With Outcomes in Incidentally Detected Lung Nodules"", American Journal of Roentgenology, 2021;217:1011-1011.
- F. Faita, T. Oranges, N. Di Lascio, F. Ciompi, S. Vitali, G. Aringhieri, A. Janowska, M. Romanelli and V. Dini, "Ultra-high-frequency ultrasound and machine learning approaches for the differential diagnosis of melanocytic lesions.", Experimental Dermatology, 2021.
- H. Pinckaers, W. Bulten, J. der Van Laak and G. Litjens, "Detection of prostate cancer in whole-slide images through end-to-end training with image-level labels.", IEEE Transactions on Medical Imaging, 2021.
- S. Scharm, J. Vogel-Claussen, C. Schaefer-Prokop, S. Dettmer, L. Knudsen, D. Jonigk, J. Fuge, R. Apel, T. Welte, F. Wacker, A. Prasse and H. Shin, "Quantification of dual-energy CT-derived functional parameters as potential imaging markers for progression of idiopathic pulmonary fibrosis", European Radiology, 2021;31:6640-6651.
- S. Veenhuizen, S. de Lange, M. Bakker, R. Pijnappel, R. Mann, E. Monninkhof, M. Emaus, P. de Koekkoek-Doll, R. Bisschops, M. Lobbes, M. de Jong, K. Duvivier, J. Veltman, N. Karssemeijer, H. de Koning, P. van Diest, W. Mali, M. van den Bosch, C. van Gils, W. Veldhuis, C. van Gils, M. Bakker, S. de Lange, S. Veenhuizen, W. Veldhuis, R. Pijnappel, M. Emaus, P. Peeters, E. Monninkhof, M. Fernandez-Gallardo, W. Mali, M. van den Bosch, P. van Diest, R. Mann, R. Mus, M. Imhof-Tas, N. Karssemeijer, C. Loo, P. de Koekkoek-Doll, H. Winter-Warnars, R. Bisschops, M. Kock, R. Storm, P. van der Valk, M. Lobbes, S. Gommers, M. Lobbes, M. de Jong, M. Rutten, K. Duvivier, P. de Graaf, J. Veltman, R. Bourez, H. de Koning and F. the Group, "Supplemental Breast MRI for Women with Extremely Dense Breasts: Results of the Second Screening Round of the DENSE Trial", Radiology, 2021;299:278-286.
- W. Sanderink, J. Teuwen, L. Appelman, L. Moy, L. Heacock, E. Weiland, N. Karssemeijer, P. Baltzer, I. Sechopoulos and R. Mann, "Comparison of simultaneous multi-slice single-shot DWI to readout-segmented DWI for evaluation of breast lesions at 3T MRI", European Journal of Radiology, 2021;138:109626.
- M. Velema, L. Canu, T. Dekkers, A. Hermus, H. Timmers, L. Schultze Kool, H. Groenewoud, C. Jacobs, J. Deinum and S. Investigators, "Volumetric evaluation of CT images of adrenal glands in primary aldosteronism.", Journal of endocrinological investigation, 2021;44(11):2359-2366.
- T. Haddad, A. Lugli, S. Aherne, V. Barresi, B. Terris, J. Bokhorst, S. Brockmoeller, M. Cuatrecasas, F. Simmer, H. El-Zimaity, J. Fléjou, D. Gibbons, G. Cathomas, R. Kirsch, T. Kuhlmann, C. Langner, M. Loughrey, R. Riddell, A. Ristimäki, S. Kakar, K. Sheahan, D. Treanor, J. van der Laak, M. Vieth, I. Zlobec and I. Nagtegaal, "Improving tumor budding reporting in colorectal cancer: a Delphi consensus study", Virchows Archiv, 2021;479:459-469.
- T. de Bel, J. Bokhorst, J. van der Laak and G. Litjens, "Residual cyclegan for robust domain transformation of histopathological tissue slides.", Medical Image Analysis, 2021;70:102004.
- M. Balkenhol, F. Ciompi, Z. Swiderska-Chadaj, R. van de Loo, M. Intezar, I. Otte-Holler, D. Geijs, J. Lotz, N. Weiss, T. de Bel, G. Litjens, P. Bult and J. van der Laak, "Optimized tumour infiltrating lymphocyte assessment for triple negative breast cancer prognostics.", The Breast, 2021;56:78-87.
- A. van der Eerden, T. van den Heuvel, V. Perlbarg, P. Vart, P. Vos, L. Puybasset, D. Galanaud, B. Platel, R. Manniesing and B. Goraj, "Traumatic Cerebral Microbleeds in the Subacute Phase Are Practical and Early Predictors of Abnormality of the Normal-Appearing White Matter in the Chronic Phase", American Journal of Neuroradiology, 2021;42:861-867.
- C. Pistenmaa, P. Nardelli, S. Ash, C. Come, A. Diaz, F. Rahaghi, R. Barr, K. Young, G. Kinney, J. Simmons, R. Wade, J. Wells, J. Hokanson, G. Washko, R. José San Estépar, J. Crapo, E. Silverman, B. Make, E. Regan, T. Beaty, P. Castaldi, M. Cho, D. DeMeo, A. El Boueiz, M. Foreman, A. Ghosh, L. Hayden, C. Hersh, J. Hetmanski, B. Hobbs, J. Hokanson, W. Kim, N. Laird, C. Lange, S. Lutz, M. McDonald, D. Prokopenko, M. Moll, J. Morrow, D. Qiao, E. Regan, A. Saferali, P. Sakornsakolpat, E. Silverman, E. Wan, J. Yun, J. Centeno, J. Charbonnier, H. Coxson, C. Galban, M. Han, E. Hoffman, S. Humphries, F. Jacobson, P. Judy, E. Kazerooni, A. Kluiber, D. Lynch, P. Nardelli, J. Newell, A. Notary, A. Oh, E. Regan, J. Ross, R. Jose San Estepar, J. Schroeder, J. Sieren, B. Stoel, J. Tschirren, E. Van Beek, B. Ginneken, E. van Rikxoort, G. Sanchez- Ferrero, L. Veitel, G. Washko, C. Wilson, R. Jensen, D. Everett, J. Crooks, K. Pratte, M. Strand, C. Wilson, J. Hokanson, E. Austin, G. Kinney, S. Lutz, K. Young, S. Bhatt, J. Bon, A. Diaz, M. Han, B. Make, S. Murray, E. Regan, X. Soler, C. Wilson, R. Bowler, K. Kechris, F. Banaei-Kashani, J. Curtis, P. Pernicano, N. Hanania, M. Atik, A. Boriek, K. Guntupalli, E. Guy, A. Parulekar, D. DeMeo, C. Hersh, F. Jacobson, G. Washko, R. Barr, J. Austin, B. D'Souza, B. Thomashow, N. MacIntyre, H. McAdams, L. Washington, C. McEvoy, J. Tashjian, R. Wise, R. Brown, N. Hansel, K. Horton, A. Lambert, N. Putcha, R. Casaburi, A. Adami, M. Budoff, H. Fischer, J. Porszasz, H. Rossiter, W. Stringer, A. Sharafkhaneh, C. Lan, C. Wendt, B. Bell, K. Kunisaki, E. Flenaugh, H. Gebrekristos, M. Ponce, S. Terpenning, G. Westney, R. Bowler, D. Lynch, R. Rosiello, D. Pace, G. Criner, D. Ciccolella, F. Cordova, C. Dass, G. D'Alonzo, P. Desai, M. Jacobs, S. Kelsen, V. Kim, A. Mamary, N. Marchetti, A. Satti, K. Shenoy, R. Steiner, A. Swift, I. Swift, M. Vega-Sanchez, M. Dransfield, W. Bailey, S. Bhatt, A. Iyer, H. Nath, J. Wells, D. Conrad, X. Soler, A. Yen, A. Comellas, K. Hoth, J. Newell, B. Thompson, M. Han, E. Kazerooni, W. Labaki, C. Galban, D. Vummidi, J. Billings, A. Begnaud, T. Allen, F. Sciurba, J. Bon, D. Chandra and J. Weissfeld, "Pulmonary Arterial Pruning and Longitudinal Change in Percent Emphysema and Lung Function", Chest, 2021;160:470-480.
- O. Turner, B. Knight, A. Zuraw, G. Litjens and D. Rudmann, "Mini Review: The Last Mile-Opportunities and Challenges for Machine Learning in Digital Toxicologic Pathology.", Toxicologic Pathology, 2021;49(4):714-719.
- A. Schreuder, C. Jacobs, N. Lessmann, M. Broeders, M. Silva, I. Isgum, P. de Jong, N. Sverzellati, M. Prokop, U. Pastorino, C. Schaefer-Prokop and B. van Ginneken, "Combining pulmonary and cardiac computed tomography biomarkers for disease-specific risk modelling in lung cancer screening", European Respiratory Journal, 2021;58(3):2003386.
- L. Fournier, L. Costaridou, L. Bidaut, N. Michoux, F. Lecouvet, L. de Geus-Oei, R. Boellaard, D. Oprea-Lager, N. Obuchowski, A. Caroli, W. Kunz, E. Oei, J. O'Connor, M. Mayerhoefer, M. Franca, A. Alberich-Bayarri, C. Deroose, C. Loewe, R. Manniesing, C. Caramella, E. Lopci, N. Lassau, A. Persson, R. Achten, K. Rosendahl, O. Clement, E. Kotter, X. Golay, M. Smits, M. Dewey, D. Sullivan, A. van der Lugt, N. deSouza and E. of Radiology, "Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers", European Radiology, 2021;31:6001-6012.
- T. Johkoh, K. Lee, M. Nishino, W. Travis, J. Ryu, H. Lee, C. Ryerson, T. Franquet, A. Bankier, K. Brown, J. Goo, H. Kauczor, D. Lynch, A. Nicholson, L. Richeldi, C. Schaefer-Prokop, J. Verschakelen, S. Raoof, G. Rubin, C. Powell, Y. Inoue and H. Hatabu, "Chest CT Diagnosis and Clinical Management of Drug-Related Pneumonitis in Patients Receiving Molecular Targeting Agents and Immune Checkpoint Inhibitors", Chest, 2021;159:1107-1125.
- T. Johkoh, K. Lee, M. Nishino, W. Travis, J. Ryu, H. Lee, C. Ryerson, T. Franquet, A. Bankier, K. Brown, J. Goo, H. Kauczor, D. Lynch, A. Nicholson, L. Richeldi, C. Schaefer-Prokop, J. Verschakelen, S. Raoof, G. Rubin, C. Powell, Y. Inoue and H. Hatabu, "Chest CT Diagnosis and Clinical Management of Drug-related Pneumonitis in Patients Receiving Molecular Targeting Agents and Immune Checkpoint Inhibitors: A Position Paper from the Fleischner Society", Radiology, 2021;298:550-566.
- B. Liefers, P. Taylor, A. Alsaedi, C. Bailey, K. Balaskas, N. Dhingra, C. Egan, F. Rodrigues, C. González-Gonzalo, T. Heeren, A. Lotery, P. Muller, A. Olvera-Barrios, B. Paul, R. Schwartz, D. Thomas, A. Warwick, A. Tufail and C. Sánchez, "Quantification of key retinal features in early and late age-related macular degeneration using deep learning", American Journal of Ophthalmology, 2021;226:1-12.
- D. Grob, L. Oostveen, C. Jacobs, E. Scholten, M. Prokop, C. Schaefer-Prokop, I. Sechopoulos and M. Brink, "Pulmonary nodule enhancement in subtraction CT and dual-energy CT: A comparison study", European Journal of Radiology, 2021;134:109443.
- C. Schaefer-Prokop and M. Prokop, "Chest Radiography in COVID-19: No Role in Asymptomatic and Oligosymptomatic Disease", Radiology, 2021;298:E156-E157.
- M. van Rijthoven, M. Balkenhol, K. Silina, J. van der Laak and F. Ciompi, "HookNet: Multi-resolution convolutional neural networks for semantic segmentation in histopathology whole-slide images", Medical Image Analysis, 2021;68:101890.
- Z. Li, J. Zhang, T. Tan, X. Teng, X. Sun, H. Zhao, L. Liu, Y. Xiao, B. Lee, Y. Li, Q. Zhang, S. Sun, Y. Zheng, J. Yan, N. Li, Y. Hong, J. Ko, H. Jung, Y. Liu, Y. Chen, C. Wang, V. Yurovskiy, P. Maevskikh, V. Khanagha, Y. Jiang, L. Yu, Z. Liu, D. Li, P. Schuffler, Q. Yu, H. Chen, Y. Tang and G. Litjens, "Deep Learning Methods for Lung Cancer Segmentation in Whole-Slide Histopathology Images--The ACDC@LungHP Challenge 2019", IEEE Journal of Biomedical and Health Informatics, 2021;25:429-440.
- J. Bartstra, F. Draaisma, S. Zwakenberg, N. Lessmann, J. Wolterink, Y. van der Schouw, P. de Jong and J. Beulens, "Six months vitamin K treatment does not affect systemic arterial calcification or bone mineral density in diabetes mellitus 2", European Journal of Nutrition, 2021;60:1691-1699.
- N. Lessmann, C. Sánchez, L. Beenen, L. Boulogne, M. Brink, E. Calli, J. Charbonnier, T. Dofferhoff, W. van Everdingen, P. Gerke, B. Geurts, H. Gietema, M. Groeneveld, L. van Harten, N. Hendrix, W. Hendrix, H. Huisman, I. Isgum, C. Jacobs, R. Kluge, M. Kok, J. Krdzalic, B. Lassen-Schmidt, K. van Leeuwen, J. Meakin, M. Overkamp, T. van Rees Vellinga, E. van Rikxoort, R. Samperna, C. Schaefer-Prokop, S. Schalekamp, E. Scholten, C. Sital, L. Stöger, J. Teuwen, K. Vaidhya Venkadesh, C. de Vente, M. Vermaat, W. Xie, B. de Wilde, M. Prokop and B. van Ginneken, "Automated Assessment of COVID-19 Reporting and Data System and Chest CT Severity Scores in Patients Suspected of Having COVID-19 Using Artificial Intelligence", Radiology, 2021;298(1):E18-E28.
- D. Tellez, G. Litjens, J. van der Laak and F. Ciompi, "Neural Image Compression for Gigapixel Histopathology Image Analysis.", IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021;43(2):567-578.
- J. Bogaerts, M. Steenbeek, M. van Bommel, J. Bulten, J. van der Laak, J. de Hullu and M. Simons, "Recommendations for diagnosing STIC: a systematic review and meta-analysis", 2021;480(4):725-737.
- N. Hendrix, E. Scholten, B. Vernhout, S. Bruijnen, B. Maresch, M. de Jong, S. Diepstraten, S. Bollen, S. Schalekamp, M. de Rooij, A. Scholtens, W. Hendrix, T. Samson, L. Sharon Ong, E. Postma, B. van Ginneken and M. Rutten, "Development and Validation of a Convolutional Neural Network for Automated Detection of Scaphoid Fractures on Conventional Radiographs", Radiology: Artificial Intelligence, 2021:e200260.
- A. Hering, S. Hager, J. Moltz, N. Lessmann, S. Heldmann and B. van Ginneken, "CNN-based Lung CT Registration with Multiple Anatomical Constraints", Medical Image Analysis, 2021;72:102139.
- M. Hosseinzadeh, A. Saha, P. Brand, I. Slootweg, M. de Rooij and H. Huisman, "Deep learning-assisted prostate cancer detection on bi-parametric MRI: minimum training data size requirements and effect of prior knowledge", European Radiology, 2021.
- D. Winkel, A. Tong, B. Lou, A. Kamen, D. Comaniciu, J. Disselhorst, A. Rodr\'ıguez-Ruiz, H. Huisman, D. Szolar, I. Shabunin, M. Choi, P. Xing, T. Penzkofer, R. Grimm, H. von Busch and D. Boll, "A Novel Deep Learning Based Computer-Aided Diagnosis System Improves the Accuracy and Efficiency of Radiologists in Reading Biparametric Magnetic Resonance Images of the Prostate", Investigative Radiology, 2021;Publish Ahead of Print.
- F. Michallek, H. Huisman, B. Hamm, S. Elezkurtaj, A. Maxeiner and M. Dewey, "Prediction of prostate cancer grade using fractal analysis of perfusion MRI: retrospective proof-of-principle study", European Radiology, 2021.
- A. Saha, M. Hosseinzadeh and H. Huisman, "End-to-end Prostate Cancer Detection in bpMRI via 3D CNNs: Effects of Attention Mechanisms, Clinical Priori and Decoupled False Positive Reduction", Medical Image Analysis, 2021:102155.
- E. Calli, K. Murphy, S. Kurstjens, T. Samson, R. Herpers, H. Smits, M. Rutten and B. van Ginneken, "Deep learning with robustness to missing data: A novel approach to the detection of COVID-19", PLoS One, 2021;16(7):e0255301.
- J. Bleker, D. Yakar, B. van Noort, D. Rouw, I. de Jong, R. Dierckx, T. Kwee and H. Huisman, "Single-center versus multi-center biparametric MRI radiomics approach for clinically significant peripheral zone prostate cancer", Insights into Imaging, 2021;12(1).
- K. van Leeuwen, F. Meijer, S. Schalekamp, M. Rutten, E. van Dijk, B. van Ginneken, T. Govers and M. Rooij, "Cost - effectiveness of artificial intelligence aided vessel occlusion detection in acute stroke: an early health technology assessment", Insights into Imaging, 2021;12:133.
- F. Michallek, H. Huisman, B. Hamm, S. Elezkurtaj, A. Maxeiner and M. Dewey, "Accuracy of fractal analysis and PI-RADS assessment of prostate magnetic resonance imaging for prediction of cancer grade groups: a clinical validation study", European Radiology, 2021.
- T. Perik, E. van Genugten, E. Aarntzen, E. Smit, H. Huisman and J. Hermans, "Quantitative CT perfusion imaging in patients with pancreatic cancer: a systematic review", Abdominal Radiology, 2021.
- A. Sekuboyina, M. Husseini, A. Bayat, M. Loffler, H. Liebl, H. Li, G. Tetteh, J. Kukacka, C. Payer, D. Stern, M. Urschler, M. Chen, D. Cheng, N. Lessmann, Y. Hu, T. Wang, D. Yang, D. Xu, F. Ambellan, T. Amiranashvili, M. Ehlke, H. Lamecker, S. Lehnert, M. Lirio, N. de Olaguer, H. Ramm, M. Sahu, A. Tack, S. Zachow, T. Jiang, X. Ma, C. Angerman, X. Wang, K. Brown, A. Kirszenberg, E. Puybareau, D. Chen, Y. Bai, B. Rapazzo, T. Yeah, A. Zhang, S. Xu, F. Hou, Z. He, C. Zeng, Z. Xiangshang, X. Liming, T. Netherton, R. Mumme, L. Court, Z. Huang, C. He, L. Wang, S. Ling, L. Huynh, N. Boutry, R. Jakubicek, J. Chmelik, S. Mulay, M. Sivaprakasam, J. Paetzold, S. Shit, I. Ezhov, B. Wiestler, B. Glocker, A. Valentinitsch, M. Rempfler, B. Menze and J. Kirschke, "VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images", Medical Image Analysis, 2021;73:102166.
- N. Marini, S. Otálora, D. Podareanu, M. van Rijthoven, J. van der Laak, F. Ciompi, H. Muller and M. Atzori, "Multi_Scale_Tools: A Python Library to Exploit Multi-Scale Whole Slide Images", Frontiers in Computer Science, 2021;3.
- F. Ciompi, M. Veta, J. van der Laak and N. Rajpoot, "Editorial Computational Pathology", IEEE} Journal of Biomedical and Health Informatics, 2021;25(2):303-306.
Preprints
- M. Aubreville, C. Bertram, M. Veta, R. Klopfleisch, N. Stathonikos, K. Breininger, N. ter Hoeve, F. Ciompi and A. Maier, "Quantifying the Scanner-Induced Domain Gap in Mitosis Detection", arXiv:2103.16515, 2021.
- A. Reinke, M. Eisenmann, M. Tizabi, C. Sudre, T. Radsch, M. Antonelli, T. Arbel, S. Bakas, M. Cardoso, V. Cheplygina, K. Farahani, B. Glocker, D. Heckmann-Notzel, F. Isensee, P. Jannin, C. Kahn, J. Kleesiek, T. Kurc, M. Kozubek, B. Landman, G. Litjens, K. Maier-Hein, B. Menze, H. Muller, J. Petersen, M. Reyes, N. Rieke, B. Stieltjes, R. Summers, S. Tsaftaris, B. van Ginneken, A. Kopp-Schneider, P. Jager and L. Maier-Hein, "Common Limitations of Image Processing Metrics: A Picture Story", arXiv preprint arXiv:2104.05642, 2021.
- J. Lotz, N. Weiss, J. van der Laak and S. Heldmann, "Comparison of Consecutive and Re-stained Sections for Image Registration in Histopathology", arXiv:2106.13150, 2021.
- M. Antonelli, A. Reinke, S. Bakas, K. Farahani, AnnetteKopp-Schneider, B. Landman, G. Litjens, B. Menze, O. Ronneberger, R. Summers, B. van Ginneken, M. Bilello, P. Bilic, P. Christ, R. Do, M. Gollub, S. Heckers, H. Huisman, W. Jarnagin, M. McHugo, S. Napel, J. Pernicka, K. Rhode, C. Tobon-Gomez, E. Vorontsov, H. Huisman, J. Meakin, S. Ourselin, M. Wiesenfarth, P. Arbelaez, B. Bae, S. Chen, L. Daza, J. Feng, B. He, F. Isensee, Y. Ji, F. Jia, N. Kim, I. Kim, D. Merhof, A. Pai, B. Park, M. Perslev, R. Rezaiifar, O. Rippel, I. Sarasua, W. Shen, J. Son, C. Wachinger, L. Wang, Y. Wang, Y. Xia, D. Xu, Z. Xu, Y. Zheng, A. Simpson, L. Maier-Hein and M. Cardoso, "The Medical Segmentation Decathlon", arXiv preprint arXiv:2106.05735, 2021.
- W. Xie, C. Jacobs and B. van Ginneken, "Dense regression activation maps for lesion segmentation in CT scans of COVID-19 patients", arXiv:2105.11748, 2021.
- J. Bokhorst, I. Nagtegaal, F. Fraggetta, S. Vatrano, W. Mesker, M. Vieth, J. van der Laak and F. Ciompi, "Automated risk classification of colon biopsies based on semantic segmentation of histopathology images", arXiv:2109.07892, 2021.
- J.S. Bosma, A. Saha, M. Hosseinzadeh, I. Slootweg, M. de Rooij and H. Huisman, "Annotation-efficient cancer detection with report-guided lesion annotation for deep learning-based prostate cancer detection in bpMRI", arXiv:2112.05151, 2021.
Papers in conference proceedings
- B. de Wilde, R. ten Broek and H. Huisman, "Cine-MRI detection of abdominal adhesions with spatio-temporal deep learning", Medical Imaging with Deep Learning, 2021.
- A. Saha, J.S. Bosma, J. Linmans, M. Hosseinzadeh and H. Huisman, "Anatomical and Diagnostic Bayesian Segmentation in Prostate MRI -- Should Different Clinical Objectives Mandate Different Loss Functions?", Medical Imaging Meets NeurIPS Workshop - 35th Conference on Neural Information Processing Systems (NeurIPS), 2021.
- R. Fick, B. Tayart, C. Bertrand, S. Lang, T. Rey, F. Ciompi, C. Tilmant, I. Farre and S. Hadj, "A Partial Label-Based Machine Learning Approach For Cervical Whole-Slide Image Classification: The Winning TissueNet Solution", 2021 43rd Annual International Conference of the {IEEE} Engineering in Medicine and Biology Society ({EMBC}), 2021.
- M. van Rijthoven, M. Balkenhol, M. Atzori, P. Bult, J. van der Laak and F. Ciompi, "Few-shot weakly supervised detection and retrieval in histopathology whole-slide images", Medical Imaging, 2021;11603:137 - 143.
- W. Aswolinskiy, D. Tellez, G. Raya, L. van der Woude, M. Looijen-Salamon, J. van der Laak, K. Grunberg and F. Ciompi, "Neural image compression for non-small cell lung cancer subtype classification in H&E stained whole-slide images", Medical Imaging 2021: Digital Pathology, 2021;11603:1 - 7.
- G. Smit, F. Ciompi, M. Cigéhn, A. Bodén, J. van der Laak and C. Mercan, "Quality control of whole-slide images through multi-class semantic segmentation of artifacts", Medical Imaging with Deep Learning, 2021.
- A. Hering, F. Peisen, T. Amaral, S. Gatidis, T. Eigentler, A. Othman and J. Moltz, "Whole-Body Soft-Tissue Lesion Tracking and Segmentation in Longitudinal CT Imaging Studies", Medical Imaging with Deep Learning, 2021.
- N. Marini, S. Otalora, F. Ciompi, G. Silvello, S. Marchesin, S. Vatrano, G. Buttafuoco, M. Atzori, H. Muller, N. Burlutskiy, Z. Li, F. Minhas, T. Peng, N. Rajpoot, B. Torbennielsen, J. Der Van Laak, M. Veta, Y. Yuan and I. Zlobec, "Multi-Scale Task Multiple Instance Learning for the Classification of Digital Pathology Images with Global Annotations", 2021.
- S. Häger, S. Heldmann, A. Hering, S. Kuckertz and A. Lange, "Variable Fraunhofer MEVIS RegLib Comprehensively Applied to Learn2Reg Challenge", Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data. MICCAI 2020, 2021;12587:74-79.
- J. Vermazeren, L. van Eekelen, L. Meesters, M. Looijen-Salamon, S. Vos, E. Munari, C. Mercan and F. Ciompi, "muPEN: Multi-class PseudoEdgeNet for PD-L1 assessment", Medical Imaging with Deep Learning, 2021.
- W. Xie, C. Jacobs and B. van Ginneken, "Deep Clustering Activation Maps for Emphysema Subtyping", Medical Imaging with Deep Learning, 2021.
- A. Reinke, M. Eisenmann, M. Tizabi, C. Sudre, T. Radsch, M. Antonelli, T. Arbel, S. Bakas, J. Cardoso, V. Cheplygina, K. Farahani, B. Glocker, D. Heckmann-Notzel, F. Isensee, P. Jannin, C. Kahn, J. Kleesiek, T. Kurc, M. Kozubek, B. Landman, G. Litjens, K. Maier-Hein, A. Martel, H. Muller, J. Petersen, M. Reyes, N. Rieke, B. Stieltjes, R. Summers, S. Tsaftaris, B. van Ginneken, A. Kopp-Schneider, P. Jager and L. Maier-Hein, "Common limitations of performance metrics in biomedical image analysis", Medical Imaging with Deep Learning, 2021.
- K. Faryna, J. van der Laak and G. Litjens, "Tailoring automated data augmentation to H&E-stained histopathology", Medical Imaging with Deep Learning, 2021.
- D. Geijs, H. Pinckaers, A. Amir and G. Litjens, "End-to-end classification on basal-cell carcinoma histopathology whole-slides images", Medical Imaging, 2021;11603:1160307.
Abstracts
- C. González-Gonzalo, E. Thee, B. Liefers, C. Klaver and C. Sánchez, "Deep learning for automated stratification of ophthalmic images: Application to age-related macular degeneration and color fundus images", European Society of Retina Specialists, 2021.
- C. González-Gonzalo, E. Thee, B. Liefers, C. de Vente, C. Klaver and C. Sánchez, "Hierarchical curriculum learning for robust automated detection of low-prevalence retinal disease features: application to reticular pseudodrusen", Association for Research in Vision and Ophthalmology, 2021.
- C. de Vente, C. González-Gonzalo, E. Thee, M. van Grinsven, C. Klaver and C. Sánchez, "Making AI Transferable Across OCT Scanners from Different Vendors", Association for Research in Vision and Ophthalmology, 2021.
- K. van Leeuwen, M. de Rooij, M. Rutten, S. Schalekamp and B. van Ginneken, "Commercial Artificial Intelligence Solutions For Radiology: A Market Update", Annual Meeting of the Radiological Society of North America, 2021.
- W. Hendrix, N. Hendrix, M. Prokop, E. Scholten, B. Van Ginneken, M. Rutten and C. Jacobs, "Trends in the Incidence of Pulmonary Nodules in Chest Computed Tomography: 10-Year Results from Two Dutch Hospitals", European Congress of Radiology, 2021.
- K. van Leeuwen, F. Meijer, S. Schalekamp, M. Rutten, E. van Dijk, B. van Ginneken, T. Govers and M. de Rooij, "Artificial Intelligence in Acute Stroke: an Early Health Technology Assessment of Vessel Occlusion Detection on Computed Tomography", European Congress of Radiology, 2021.
- J.S. Bosma, A. Saha, M. Hosseinzadeh and H. Huisman, "Augmenting AI with Automated Segmentation of Report Findings Applied to Prostate Cancer Detection in Biparametric MRI", Annual Meeting of the Radiological Society of North America, 2021.
- K. van Leeuwen, M. de Rooij, M. Rutten, B. van Ginneken and S. Schalekamp, "Performance Of A Commercial Software Package For Lung Nodule Detection On Chest Radiographs Compared With 8 Expert Readers", Annual Meeting of the Radiological Society of North America, 2021.
- Y. Jiao, M. Rijthoven, J. Li, K. Grunberg, S. Fei and F. Ciompi, "Automatic Lung Cancer Segmentation in Histopathology Whole-Slide Images with Deep Learning", European Congress on Digital Pathology (ECDP), 2021.
- K. Venkadesh, A. Schreuder, E. Scholten, S. Atkar-Khattra, J. Mayo, Z. Saghir, M. Wille, B. van Ginneken, S. Lam, M. Prokop and C. Jacobs, "Integration Of A Deep Learning Algorithm Into The Clinically Established PanCan Model For Malignancy Risk Estimation Of Screen-detected Pulmonary Nodules In First Screening CT", Annual Meeting of the Radiological Society of North America, 2021.
- N. Alves, J. Hermans and H. Huisman, "CT-based Deep Learning Towards Early Detection Of Pancreatic Ductal Adenocarcinoma", Annual Meeting of the Radiological Society of North America, 2021.
- A. Saha, J.S. Bosma, C. Roest, M. Hosseinzadeh, J. Futterer and H. Huisman, "Deep Learning with Bayesian Inference for Prostate Cancer Diagnosis across Longitudinal Biparametric MRI", Annual Meeting of the Radiological Society of North America, 2021.
- C. González-Gonzalo, F. Verbraak, R. Schlingemann, C. Klaver, A. Lee, A. Tufail and C. Sánchez, "Trustworthy AI: closing the gap between development and integration of AI in Ophthalmology", European Association for the Study of Diabetes Eye Complications Study Group, 2021.
- K. van Leeuwen, M. Rutten, S. Schalekamp, M. de Rooij and B. van Ginneken, "Clinical use of artificial intelligence in radiology departments in the Netherlands: a survey", European Congress of Radiology, 2021.
PhD theses
- D. Tellez, "Advancing computational pathology with deep learning: from patches to gigapixel image-level classification", PhD thesis, 2021.
- A. Schreuder, "Lung cancer screening: use the scan to decide who to scan when", PhD thesis, 2021.
Master theses
- J. Verboom, "Deep Learning for Fracture Detection in the Radius and Ulna on Conventional Radiographs", Master thesis, 2021.
- R. HACKING, "Combining CT scans and clinical features for improved automated COVID-19 detection", Master thesis, 2021.
- E. Martynova, "Artificial intelligence-assisted detection of adhesions on cine-MRI", Master thesis, 2021.
- I. Guclu, "Programmatically generating annotations for de-identification of clinical data", Master thesis, 2021.
- J.S. Bosma, A. Saha, M. Hosseinzadeh and H. Huisman, "Augmenting AI with Automated Segmentation of Report Findings Applied to Prostate Cancer Detection in Biparametric MRI", Master thesis, 2021.
Other publications
- C. Rao, S. Pai, I. Hadzic, I. Zhovannik, D. Bontempi, A. Dekker, J. Teuwen and A. Traverso, "Oropharyngeal Tumour Segmentation Using Ensemble 3D PET-CT Fusion Networks for the HECKTOR Challenge", Head and Neck Tumor Segmentation, 2021:65-77.