Publications
Papers in international journals
- F. Peisen, A. Gerken, A. Hering, I. Dahm, K. Nikolaou, S. Gatidis, T. Eigentler, T. Amaral, J. Moltz and A. Othman, "Can Delta Radiomics Improve the Prediction of Best Overall Response, Progression-Free Survival, and Overall Survival of Melanoma Patients Treated with Immune Checkpoint Inhibitors?", Cancers, 2024;16:2669.
- A. Jurgas, M. Wodzinski, M. D'Amato, J. van der Laak, M. Atzori and H. Müller, "Improving quality control of whole slide images by explicit artifact augmentation", Scientific Reports, 2024;14.
- C. Roest, D. Yakar, D. Rener Sitar, J.S. Bosma, D. Rouw, S. Fransen, H. Huisman and T. Kwee, "Multimodal AI Combining Clinical and Imaging Inputs Improves Prostate Cancer Detection", Investigative Radiology, 2024.
- K. Faryna, L. Tessier, J. Retamero, S. Bonthu, P. Samanta, N. Singhal, S. Kammerer-Jacquet, C. Radulescu, V. Agosti, A. Collin, X. Farre', J. Fontugne, R. Grobholz, A. Hoogland, K. Leite, M. Oktay, A. Polonia, P. Roy, P. Salles, T. van der Kwast, J. van Ipenburg, J. van der Laak and G. Litjens, "Evaluation of AI-based Gleason grading algorithms "in the wild"", Modern Pathology, 2024:100563.
- J. An, Y. Wang, Q. Cai, G. Zhao, S. Dooper, G. Litjens and Z. Gao, "Transformer-Based Weakly Supervised Learning for Whole Slide Lung Cancer Image Classification", IEEE Journal of Biomedical and Health Informatics, 2024:1-14.
- C. de Vente, B. van Ginneken, C. Hoyng, C. Klaver and C. Sánchez, "Uncertainty-aware multiple-instance learning for reliable classification: Application to optical coherence tomography", Medical Image Analysis, 2024;97:103259.
- V. Bozgo, C. Roest, I. van Oort, D. Yakar, H. Huisman and M. de Rooij, "Prostate MRI and artificial intelligence during active surveillance: should we jump on the bandwagon?", European Radiology, 2024.
- A. Saha, J.S. Bosma, J. Twilt, B. van Ginneken, A. Bjartell, A. Padhani, D. Bonekamp, G. Villeirs, G. Salomon, G. Giannarini, J. Kalpathy-Cramer, J. Barentsz, K. Maier-Hein, M. Rusu, O. Rouviere, R. van den Bergh, V. Panebianco, V. Kasivisvanathan, N. Obuchowski, D. Yakar, M. Elschot, J. Veltman, J. Futterer, C. Noordman, I. Slootweg, C. Roest, S. Fransen, M. Sunoqrot, T. Bathen, D. Rouw, J. Immerzeel, J. Geerdink, C. van Run, M. Groeneveld, J. Meakin, A. Karagoz, A. Bone, A. Routier, A. Marcoux, C. Abi-Nader, C. Li, D. Feng, D. Alis, E. Karaarslan, E. Ahn, F. Nicolas, G. Sonn, I. Bhattacharya, J. Kim, J. Shi, H. Jahanandish, H. An, H. Kan, I. Oksuz, L. Qiao, M. Rohe, M. Yergin, M. Khadra, M. Seker, M. Kartal, N. Debs, R. Fan, S. Saunders, S. Soerensen, S. Moroianu, S. Vesal, Y. Yuan, A. Malakoti-Fard, A. Maciunien, A. Kawashima, A. de de Machadov, A. Moreira, A. Ponsiglione, A. Rappaport, A. Stanzione, A. Ciuvasovas, B. Turkbey, B. de Keyzer, B. Pedersen, B. Eijlers, C. Chen, C. Riccardo, D. Alis, E. Courrech Staal, F. Jaderling, F. Langkilde, G. Aringhieri, G. Brembilla, H. Son, H. Vanderlelij, H. Raat, I. Pikuniene, I. Macova, I. Schoots, I. Caglic, J. Zawaideh, J. Wallstrom, L. Bittencourt, M. Khurram, M. Choi, N. Takahashi, N. Tan, P. Franco, P. Gutierrez, P. Thimansson, P. Hanus, P. Puech, P. Rau, P. de Visschere, R. Guillaume, R. Cuocolo, R. Falcao, R. van Stiphout, R. Girometti, R. Briediene, R. Grigiene, S. Gitau, S. Withey, S. Ghai, T. Penzkofer, T. Barrett, V. Tammisetti, V. Logager, V. Cerny, W. Venderink, Y. Law, Y. Lee, M. de Rooij and H. Huisman, "Artificial intelligence and radiologists in prostate cancer detection on MRI (PI-CAI): an international, paired, non-inferiority, confirmatory study", The Lancet Oncology, 2024;25(7):879-887.
- E. Smeets, M. Trajkovic-Arsic, D. Geijs, S. Karakaya, M. van Zanten, L. Brosens, B. Feuerecker, M. Gotthardt, J. Siveke, R. Braren, F. Ciompi and E. Aarntzen, "Histology-Based Radiomics for [18F]FDG PET Identifies Tissue Heterogeneity in Pancreatic Cancer", Journal of Nuclear Medicine, 2024:jnumed.123.266262.
- P. Vendittelli, J. Bokhorst, E. Smeets, V. Kryklyva, L. Brosens, C. Verbeke and G. Litjens, "Automatic quantification of tumor-stroma ratio as a prognostic marker for pancreatic cancer", PLOS ONE, 2024;19:e0301969.
- S. Schalekamp, K. van Leeuwen, E. Calli, K. Murphy, M. Rutten, B. Geurts, L. Peters-Bax, B. van Ginneken and M. Prokop, "Performance of AI to exclude normal chest radiographs to reduce radiologists' workload", European Radiology, 2024.
- Q. van Lohuizen, C. Roest, F. Simonis, S. Fransen, T. Kwee, D. Yakar and H. Huisman, "Assessing deep learning reconstruction for faster prostate MRI: visual vs. diagnostic performance metrics", European Radiology, 2024.
- A. Scott, M. Limbada, T. Perumal, S. Jaumdally, A. Kotze, C. van der Merwe, M. Cheeba, D. Milimo, K. Murphy, B. van Ginneken, M. de Kock, R. Warren, P. Gina, J. Swanepoel, L. Kühn, S. Oelofse, A. Pooran, A. Esmail, H. Ayles and K. Dheda, "Integrating molecular and radiological screening tools during community-based active case-finding for tuberculosis and COVID-19 in southern Africa", International Journal of Infectious Diseases, 2024:107081.
- S. Fransen, C. Roest, Q. Van Lohuizen, J.S. Bosma, F. Simonis, T. Kwee, D. Yakar and H. Huisman, "Using deep learning to optimize the prostate MRI protocol by assessing the diagnostic efficacy of MRI sequences", European Journal of Radiology, 2024;175:111470.
- N. Hendrix, W. Hendrix, B. Maresch, J. van Amersfoort, T. Oosterveld-Bonsma, S. Kolderman, M. Vestering, S. Zielinski, K. Rutten, J. Dammeier, L. Ong, B. van Ginneken and M. Rutten, "Artificial intelligence for automated detection and measurements of carpal instability signs on conventional radiographs", European Radiology, 2024.
- R. Leon-Ferre, J. Carter, D. Zahrieh, J. Sinnwell, R. Salgado, V. Suman, D. Hillman, J. Boughey, K. Kalari, F. Couch, J. Ingle, M. Balkenhol, F. Ciompi, J. van der Laak and M. Goetz, "Automated mitotic spindle hotspot counts are highly associated with clinical outcomes in systemically untreated early-stage triple-negative breast cancer", npj Breast Cancer, 2024;10.
- D. Peeters, N. Alves, K. Venkadesh, R. Dinnessen, Z. Saghir, E. Scholten, C. Schaefer-Prokop, R. Vliegenthart, M. Prokop and C. Jacobs, "Enhancing a deep learning model for pulmonary nodule malignancy risk estimation in chest CT with uncertainty estimation", European Radiology, 2024.
- N. van Nistelrooij, K. Ghoul, T. Xi, A. Saha, S. Kempers, M. Cenci, B. Loomans, T. Flügge, B. van Ginneken and S. Vinayahalingam, "Combining public datasets for automated tooth assessment in panoramic radiographs", BMC Oral Health, 2024;24.
- V. Eekelen, Leander, J. Spronck, M. Looijen-Salamon, S. Vos, E. Munari, I. Girolami, A. Eccher, B. Acs, C. Boyaci, G. de Souza, M. Demirel-Andishmand, L. Meesters, D. Zegers, L. van der Woude, W. Theelen, M. van den Heuvel, K. Grünberg, B. van Ginneken, J. van der Laak and F. Ciompi, "Comparing deep learning and pathologist quantification of cell-level PD-L1 expression in non-small cell lung cancer whole-slide images", Scientific Reports, 2024;14.
- U. Mahmood, A. Shukla-Dave, H. Chan, K. Drukker, R. Samala, Q. Chen, D. Vergara, H. Greenspan, N. Petrick, B. Sahiner, Z. Huo, R. Summers, K. Cha, G. Tourassi, T. Deserno, K. Grizzard, J. Näppi, H. Yoshida, D. Regge, R. Mazurchuk, K. Suzuki, L. Morra, H. Huisman, S. Armato and L. Hadjiiski, "Artificial intelligence in medicine: mitigating risks and maximizing benefits via quality assurance, quality control, and acceptance testing", BJR|Artificial Intelligence, 2024;1.
- J. van der Graaf, M. van Hooff, C. Buckens, M. Rutten, J. van Susante, R. Kroeze, M. de Kleuver, B. van Ginneken and N. Lessmann, "Lumbar spine segmentation in MR images: a dataset and a public benchmark", Scientific Data, 2024;11(1):264.
- J. van der Graaf, M. van Hooff, B. van Ginneken, M. Huisman, M. Rutten, D. Lamers, N. Lessmann and M. de Kleuver, "Development and validation of AI-based automatic measurement of coronal Cobb angles in degenerative scoliosis using sagittal lumbar MRI", European Radiology, 2024:1-10.
- A. Vos, L. Pijnenborg, S. van Vliet, L. Kodach, F. Ciompi, R. van der Post, F. Simmer and I. Nagtegaal, "Biological background of colorectal polyps and carcinomas with heterotopic ossification: A national study and literature review", Human Pathology, 2024;145:34-41.
- L. Maier-Hein, A. Reinke, P. Godau, M. Tizabi, F. Buettner, E. Christodoulou, B. Glocker, F. Isensee, J. Kleesiek, M. Kozubek, M. Reyes, M. Riegler, M. Wiesenfarth, A. Kavur, C. Sudre, M. Baumgartner, M. Eisenmann, D. Heckmann-Nötzel, T. Rädsch, L. Acion, M. Antonelli, T. Arbel, S. Bakas, A. Benis, M. Blaschko, M. Cardoso, V. Cheplygina, B. Cimini, G. Collins, K. Farahani, L. Ferrer, A. Galdran, B. van Ginneken, R. Haase, D. Hashimoto, M. Hoffman, M. Huisman, P. Jannin, C. Kahn, D. Kainmueller, B. Kainz, A. Karargyris, A. Karthikesalingam, F. Kofler, A. Kopp-Schneider, A. Kreshuk, T. Kurc, B. Landman, G. Litjens, A. Madani, K. Maier-Hein, A. Martel, P. Mattson, E. Meijering, B. Menze, K. Moons, H. Müller, B. Nichyporuk, F. Nickel, J. Petersen, N. Rajpoot, N. Rieke, J. Saez-Rodriguez, C. Sánchez, S. Shetty, M. van Smeden, R. Summers, A. Taha, A. Tiulpin, S. Tsaftaris, B. Van Calster, G. Varoquaux and P. Jäger, "Metrics reloaded: recommendations for image analysis validation", Nature Methods, 2024;21:195-212.
- A. Reinke, M. Tizabi, M. Baumgartner, M. Eisenmann, D. Heckmann-Nötzel, A. Kavur, T. Rädsch, C. Sudre, L. Acion, M. Antonelli, T. Arbel, S. Bakas, A. Benis, F. Buettner, M. Cardoso, V. Cheplygina, J. Chen, E. Christodoulou, B. Cimini, K. Farahani, L. Ferrer, A. Galdran, B. van Ginneken, B. Glocker, P. Godau, D. Hashimoto, M. Hoffman, M. Huisman, F. Isensee, P. Jannin, C. Kahn, D. Kainmueller, B. Kainz, A. Karargyris, J. Kleesiek, F. Kofler, T. Kooi, A. Kopp-Schneider, M. Kozubek, A. Kreshuk, T. Kurc, B. Landman, G. Litjens, A. Madani, K. Maier-Hein, A. Martel, E. Meijering, B. Menze, K. Moons, H. Müller, B. Nichyporuk, F. Nickel, J. Petersen, S. Rafelski, N. Rajpoot, M. Reyes, M. Riegler, N. Rieke, J. Saez-Rodriguez, C. Sánchez, S. Shetty, R. Summers, A. Taha, A. Tiulpin, S. Tsaftaris, B. Van Calster, G. Varoquaux, Z. Yaniv, P. Jäger and L. Maier-Hein, "Understanding metric-related pitfalls in image analysis validation", Nature Methods, 2024;21:182-194.
- T. Perik, N. Alves, J. Hermans and H. Huisman, "Automated Quantitative Analysis of CT Perfusion to Classify Vascular Phenotypes of Pancreatic Ductal Adenocarcinoma", Cancer, 2024;16(3):577.
- L. Boulogne, J. Charbonnier, C. Jacobs, E. van der Heijden and B. van Ginneken, "Estimating lung function from computed tomography at the patient and lobe level using machine learning", Medical Physics, 2024;51:2834-2845.
- E. Chelebian, C. Avenel, F. Ciompi and C. Wählby, "DEPICTER: Deep representation clustering for histology annotation", Computers in Biology and Medicine, 2024;170:108026.
- B. Russell, K. Beyer, A. Lawlor, M. Roobol, L. Venderbos, S. Remmers, E. Briers, S. MacLennan, S. MacLennan, M. Omar, M. Van Hemelrijck, E. Smith, J. N'Dow, K. Plass, M. Ribal, N. Mottet, R. Shepherd, T. Abbott, K. Mastris, L. Moris, M. Lardas, T. den Van Broeck, P. Willemse, N. Fossati, K. Pang, R. Campi, I. Greco, M. Gacci, S. Serni, A. Bjartell, R. Lonnerbro, A. Briganti, D. Crosti, R. Garzonio, G. Gandaglia, M. Faticoni, G. office, C. Bangma, M. Jongerden, D. Tilki, A. Auvinen, T. Murtola, T. Visakorpi, K. Talala, T. Tammela, A. Siltari, S. Lejeune, L. Colette, S. Caputova, D. Poli, S. Byrne, L. Fialho, A. Rowland, N. Tapela, N. Di Flora, K. Apostolidis, V. Lemair, B. De Meulder, C. Auffray, N. Taibi, A. Hijazy, A. Saporta, K. Sun, S. Power, N. Zounemat Kermani, K. van Bochove, A. Tafreshiha, C. Bernini, D. Horgan, L. Fullwood, M. Holtorf, D. Lancet, G. Bernstein, S. Tripathee, M. Wirth, M. Froehner, B. Brenner, A. Borkowetz, C. Thomas, F. Horn, K. Reiche, M. Kreuz, A. Josefsson, D. Gasi Tandefelt, J. Hugosson, J. Schalken, H. Huisman, T. Hofmarcher, P. Lindgren, E. Andersson, A. Fridhammar, M. Tames Grijalva, S. Evans-Axelsson, F. Verholen, J. Zong, J. Butler-Ransohoff, T. Williamson, R. Waldeck, A. Bruno, E. Nevedomskaya, S. Fatoba, N. Constantinovici, C. Steinbeisser, M. Maass, P. Torremante, E. Dochy, F. Pisa, M. Voss, K. Papineni, J. Wang-silvanto, R. Snijder, X. Wang, M. Lambrecht, R. Wolfinger, S. Eid, S. Palanisamy, S. Haque, L. Antoni, A. Servan, K. Pascoe, P. Robinson, J. Lencart, B. Jaton, H. Turunen, O. Kilkku, P. Pohjanjousi, O. Voima, L. Nevalaita, K. Punakivi, S. Seager, S. Ratwani, K. Grzeslak, J. Brash, E. Longden-Chapman, D. Burke, M. Licour, S. Payne, A. Yong, F. Lujan, S. Le Mare, J. Hendrich, M. Bussmann, Juckeland, Kotik, D. Poli and C. Reich, "Survivorship Data in Prostate Cancer: Where Are We and Where Do We Need To Be?", European Urology Open Science, 2024;59:27-29.
- C. Jacobs, "Decoding pulmonary nodules: can machine learning enhance malignancy risk stratification?", Thorax, 2024;79:293-294.
- K. Faryna, J. van der Laak and G. Litjens, "Automatic data augmentation to improve generalization of deep learning in H&E stained histopathology", Computers in Biology and Medicine, 2024;170:108018.
- D. Schouten, J. van der Laak, B. van Ginneken and G. Litjens, "Full resolution reconstruction of whole-mount sections from digitized individual tissue fragments", Scientific Reports, 2024;14.
- C. Jahangir, D. Page, G. Broeckx, C. Gonzalez, C. Burke, C. Murphy, J. Reis-Filho, A. Ly, P. Harms, R. Gupta, M. Vieth, A. Hida, M. Kahila, Z. Kos, P. van Diest, S. Verbandt, J. Thagaard, R. Khiroya, K. Abduljabbar, G. Acosta Haab, B. Acs, S. Adams, J. Almeida, I. Alvarado-Cabrero, F. Azmoudeh-Ardalan, S. Badve, N. Baharun, E. Bellolio, V. Bheemaraju, K. Blenman, L. Mendonça Botinelly Fujimoto, O. Burgues, A. Chardas, M. Cheang, F. Ciompi, L. Cooper, A. Coosemans, G. Corredor, F. Dantas Portela, F. Deman, S. Demaria, S. Dudgeon, M. Elghazawy, C. Fernandez-Martín, S. Fineberg, S. Fox, J. Giltnane, S. Gnjatic, P. Gonzalez-Ericsson, A. Grigoriadis, N. Halama, M. Hanna, A. Harbhajanka, S. Hart, J. Hartman, S. Hewitt, H. Horlings, Z. Husain, S. Irshad, E. Janssen, T. Kataoka, K. Kawaguchi, A. Khramtsov, U. Kiraz, P. Kirtani, L. Kodach, K. Korski, G. Akturk, E. Scott, A. Kovács, A. L\aenkholm , C. Lang-Schwarz, D. Larsimont, J. Lennerz, M. Lerousseau, X. Li, A. Madabhushi, S. Maley, V. Manur Narasimhamurthy, D. Marks, E. McDonald, R. Mehrotra, S. Michiels, D. Kharidehal, F. Minhas, S. Mittal, D. Moore, S. Mushtaq, H. Nighat, T. Papathomas, F. Penault-Llorca, R. Perera, C. Pinard, J. Pinto-Cardenas, G. Pruneri, L. Pusztai, N. Rajpoot, B. Rapoport, T. Rau, J. Ribeiro, D. Rimm, A. Vincent-Salomon, J. Saltz, S. Sayed, E. Hytopoulos, S. Mahon, K. Siziopikou, C. Sotiriou, A. Stenzinger, M. Sughayer, D. Sur, F. Symmans, S. Tanaka, T. Taxter, S. Tejpar, J. Teuwen, E. Thompson, T. Tramm, W. Tran, J. van der Laak, G. Verghese, G. Viale, N. Wahab, T. Walter, Y. Waumans, H. Wen, W. Yang, Y. Yuan, J. Bartlett, S. Loibl, C. Denkert, P. Savas, S. Loi, E. Specht Stovgaard, R. Salgado, W. Gallagher and A. Rahman, "Image-based multiplex immune profiling of cancer tissues: translational implications. A report of the International Immuno-oncology Biomarker Working Group on Breast Cancer", The Journal of Pathology, 2024;262:271-288.
- J. Linmans, G. Raya, J. van der Laak and G. Litjens, "Diffusion models for out-of-distribution detection in digital pathology", Medical Image Analysis, 2024;93:103088.
- D. Geijs, S. Dooper, W. Aswolinskiy, L. Hillen, A. Amir and G. Litjens, "Detection and subtyping of basal cell carcinoma in whole-slide histopathology using weakly-supervised learning", Medical Image Analysis, 2024;93:103063.
- K. van Leeuwen, S. Schalekamp, M. Rutten, M. Huisman, C. Schaefer-Prokop, M. de Rooij, B. van Ginneken, B. Maresch, B. Geurts, C. van Dijke, E. Laupman-Koedam, E. Hulleman, E. Verhoeff, E. Meys, F. Mohamed Hoesein, F. ter Brugge, F. van Hoorn, F. van der Wel, I. van den Berk, J. Luyendijk, J. Meakin, J. Habets, J. Verbeke, J. Nederend, K. Meys, L. Deden, L. Langezaal, M. Nasrollah, M. Meij, M. Boomsma, M. Vermeulen, M. Vestering, O. Vijlbrief, P. Algra, S. Algra, S. Bollen, T. Samson, Y. von Brucken Fock, B. Maresch, B. Geurts, C. van Dijke, E. Laupman-Koedam, E. Hulleman, E. Verhoeff, E. Meys, F. Mohamed Hoesein, F. ter Brugge, F. van Hoorn, F. van der Wel, I. van den Berk, J. Luyendijk, J. Meakin, J. Habets, J. Verbeke, J. Nederend, K. Meys, L. Deden, L. Langezaal, M. Nasrollah, M. Meij, M. Boomsma, M. Vermeulen, M. Vestering, O. Vijlbrief, P. Algra, S. Algra, S. Bollen, T. Samson, Y. von Brucken Fock and F. the Group, "Comparison of Commercial AI Software Performance for Radiograph Lung Nodule Detection and Bone Age Prediction", Radiology, 2024;310.
- M. van Rijthoven, S. Obahor, F. Pagliarulo, V. den Maries, P. Schraml, H. Moch, J. van der Laak, F. Ciompi and K. Silina, "Multi-resolution deep learning characterizes tertiary lymphoid structures and their prognostic relevance in solid tumors", Communications Medicine, 2024.
- S. Vermorgen, T. Gelton, P. Bult, H. Kusters-Vandevelde, J. Hausnerová, K. de Van Vijver, B. Davidson, I. Stefansson, L. Kooreman, A. Qerimi, J. Huvila, B. Gilks, M. Shahi, S. Zomer, C. Bartosch, J. Pijnenborg, J. Bulten, F. Ciompi and M. Simons, "Endometrial Pipelle Biopsy Computer-Aided Diagnosis: A Feasibility Study", Modern Pathology, 2024;37:100417.
- G. Solé-Guardia, M. Luijten, B. Geenen, J. Claassen, G. Litjens, F. de Leeuw, M. Wiesmann and A. Kiliaan, "Three-dimensional identification of microvascular pathology and neurovascular inflammation in severe white matter hyperintensity: a case report", Scientific Reports, 2024;14.
- R. Samala, K. Drukker, A. Shukla-Dave, H. Chan, B. Sahiner, N. Petrick, H. Greenspan, U. Mahmood, R. Summers, G. Tourassi, T. Deserno, D. Regge, J. Näppi, H. Yoshida, Z. Huo, Q. Chen, D. Vergara, K. Cha, R. Mazurchuk, K. Grizzard, H. Huisman, L. Morra, K. Suzuki, S. Armato and L. Hadjiiski, "AI and machine learning in medical imaging: key points from development to translation", BJR|Artificial Intelligence, 2024;1.
- N. Marini, S. Marchesin, M. Wodzinski, A. Caputo, D. Podareanu, B. Guevara, S. Boytcheva, S. Vatrano, F. Fraggetta, F. Ciompi, G. Silvello, H. Müller and M. Atzori, "Multimodal representations of biomedical knowledge from limited training whole slide images and reports using deep learning", Medical Image Analysis, 2024;97:103303.
- W. Xie, C. Jacobs, J. Charbonnier and B. van Ginneken, "Structure and position-aware graph neural network for airway labeling", Medical Image Analysis, 2024;97:103286.
- F. Khoraminia, F. de Jong, F. Akram, G. Litjens, M. Jansen, A. Gonzalez, D. Lichtenburg, A. Stubbs, N. Khalili and T. Zuiverloon, "Abstract B004: Deep learning unveils molecular footprints in histology: predicting molecular subtypes from bladder cancer histology slides", Clinical Cancer Research, 2024;30:B004-B004.
- S. Bosman, I. Ayakaka, J. Muhairwe, M. Kamele, A. van Heerden, T. Madonsela, N. Labhardt, G. Sommer, J. Bremerich, T. Zoller, K. Murphy, B. van Ginneken, A. Keter, B. Jacobs, M. Bresser, A. Signorell, T. Glass, L. Lynen and K. Reither, "Evaluation of C-Reactive Protein and Computer-Aided Analysis of Chest X-rays as Tuberculosis Triage Tests at Health Facilities in Lesotho and South Africa", Clinical Infectious Diseases, 2024.
- A. Pfob, T. He, L. Cai, R. Barr, V. Duda, Z. Alwafai, C. Balleyguier, D. Clevert, S. Fastner, C. Gomez, M. Goncalo, I. Gruber, M. Hahn, A. Hennigs, P. Kapetas, S. Lu, J. Nees, R. Ohlinger, F. Riedel, M. Rutten, B. Schaefgen, A. Stieber, R. Togawa, M. Tozaki, S. Wojcinski, C. Xu, G. Rauch, J. Heil, C. Sidey-Gibbons and M. Golatta, "Abstract PO3-07-02: Radiomics Models for B-mode Breast Ultrasound and Strain Elastography to improve Breast Cancer Diagnosis (INSPiRED 005): An International, Multicenter Analysis", Cancer Research, 2024;84:PO3-07-02-PO3-07-02.
- A. Hering, M. Westphal, A. Gerken, H. Almansour, M. Maurer, B. Geisler, T. Kohlbrandt, T. Eigentler, T. Amaral, N. Lessmann, S. Gatidis, H. Hahn, K. Nikolaou, A. Othman, J. Moltz and F. Peisen, "Improving assessment of lesions in longitudinal CT scans: a bi-institutional reader study on an AI-assisted registration and volumetric segmentation workflow", International Journal of Computer Assisted Radiology and Surgery, 2024.
- G. Solé-Guardia, M. Luijten, E. Janssen, R. Visch, B. Geenen, B. Küsters, J. Claassen, G. Litjens, F. de Leeuw, M. Wiesmann and A. Kiliaan, "Deep learning-based segmentation in
MRI -(immuno)histological examination of myelin and axonal damage in normal-appearing white matter and white matter hyperintensities", Brain Pathology, 2024. - F. Vanobberghen, A. Keter, B. Jacobs, T. Glass, L. Lynen, I. Law, K. Murphy, B. van Ginneken, I. Ayakaka, A. van Heerden, L. Maama and K. Reither, "Computer-aided detection thresholds for digital chest radiography interpretation in tuberculosis diagnostic algorithms", ERJ Open Research, 2023;10:00508-2023.
- J. Lotz, N. Weiss, J. van der Laak and S. Heldmann, "Comparison of consecutive and restained sections for image registration in histopathology", Journal of Medical Imaging, 2023;10.
- W. Aswolinskiy, E. Munari, H. Horlings, L. Mulder, G. Bogina, J. Sanders, Y. Liu, A. van den Belt-Dusebout, L. Tessier, M. Balkenhol, M. Stegeman, J. Hoven, J. Wesseling, J. van der Laak, E. Lips and F. Ciompi, "PROACTING: predicting pathological complete response to neoadjuvant chemotherapy in breast cancer from routine diagnostic histopathology biopsies with deep learning", Breast Cancer Research, 2023;25.
- K. Murphy, J. Muhairwe, S. Schalekamp, B. van Ginneken, I. Ayakaka, K. Mashaete, B. Katende, A. van Heerden, S. Bosman, T. Madonsela, L. Gonzalez Fernandez, A. Signorell, M. Bresser, K. Reither and T. Glass, "COVID-19 screening in low resource settings using artificial intelligence for chest radiographs and point-of-care blood tests", Scientific Reports, 2023;13.
- N. Brouwer, A. Khan, J. Bokhorst, F. Ayatollahi, J. Hay, F. Ciompi, F. Simmer, N. Hugen, J. de Wilt, M. Berger, A. Lugli, I. Zlobec, J. Edwards and I. Nagtegaal, "The complexity of shapes; how the circularity of tumor nodules impacts prognosis in colorectal cancer", Modern Pathology, 2023:100376.
- W. Hendrix, N. Hendrix, E. Scholten, M. Mourits, J. Trap-de Jong, S. Schalekamp, M. Korst, M. van Leuken, B. van Ginneken, M. Prokop, M. Rutten and C. Jacobs, "Deep learning for the detection of benign and malignant pulmonary nodules in non-screening chest CT scans", Communications Medicine, 2023;3(1):156.
- Y. Jiao, J. van der Laak, S. Albarqouni, Z. Li, T. Tan, A. Bhalerao, J. Ma, J. Sun, J. Pocock, J. Pluim, N. Koohbanani, R. Bashir, S. Raza, S. Liu, S. Graham, S. Wetstein, S. Khurram, T. Watson, N. Rajpoot, M. Veta and F. Ciompi, "LYSTO: The Lymphocyte Assessment Hackathon and Benchmark Dataset", IEEE Journal of Biomedical and Health Informatics, 2023:1-12.
- J. Linmans, E. Hoogeboom, J. van der Laak and G. Litjens, "The Latent Doctor Model for Modeling Inter-Observer Variability", IEEE Journal of Biomedical and Health Informatics, 2023:1-12.
- C. Noordman, D. Yakar, J. Bosma, F. Simonis and H. Huisman, "Complexities of deep learning-based undersampled MR image reconstruction", European Radiology Experimental, 2023;7.
- A. Lauritzen, M. von Euler-Chelpin, E. Lynge, I. Vejborg, M. Nielsen, N. Karssemeijer and M. Lillholm, "Robust cross-vendor mammographic texture models using augmentation-based domain adaptation for long-term breast cancer risk", Journal of Medical Imaging, 2023;10.
- N. Alves, J.S. Bosma, K. Venkadesh, C. Jacobs, Z. Saghir, M. de Rooij, J. Hermans and H. Huisman, "Prediction Variability to Identify Reduced AI Performance in Cancer Diagnosis at MRI and CT", Radiology, 2023;308(3):e230275.
- Y. Li, Y. Fu, I. Gayo, Q. Yang, Z. Min, S. Saeed, W. Yan, Y. Wang, J. Noble, M. Emberton, M. Clarkson, H. Huisman, D. Barratt, V. Prisacariu and Y. Hu, "Prototypical few-shot segmentation for cross-institution male pelvic structures with spatial registration", Medical Image Analysis, 2023;90:102935.
- H. ten Berg, B. van Bakel, L. van de Wouw, K. Jie, A. Schipper, H. Jansen, R. O'Connor, B. van Ginneken and S. Kurstjens, "ChatGPT and Generating a Differential Diagnosis Early in an Emergency Department Presentation", Annals of Emergency Medicine, 2023.
- S. Vinayahalingam, S. Kempers, J. Schoep, T. Hsu, D. Moin, B. van Ginneken, T. Flügge, M. Hanisch and T. Xi, "Intra-oral scan segmentation using deep learning", BMC Oral Health, 2023;23.
- N. Glaser, S. Bosman, T. Madonsela, A. van Heerden, K. Mashaete, B. Katende, I. Ayakaka, K. Murphy, A. Signorell, L. Lynen, J. Bremerich and K. Reither, "Incidental radiological findings during clinical tuberculosis screening in Lesotho and South Africa: a case series", Journal of Medical Case Reports, 2023;17.
- K. van der Sluijs, J. Thannhauser, I. Visser, P. Nabeel, K. Raj, A. Malik, K. Reesink, T. Eijsvogels, E. Bakker, P. Kaur, J. Joseph and D. Thijssen, "Central and local arterial stiffness in White Europeans compared to age-, sex-, and BMI-matched South Asians", PLOS ONE, 2023;18:e0290118.
- J. Swillens, I. Nagtegaal, S. Engels, A. Lugli, R. Hermens and J. van der Laak, "Pathologists' first opinions on barriers and facilitators of computational pathology adoption in oncological pathology: an international study", Oncogene, 2023;42:2816-2827.
- J. Bleker, C. Roest, D. Yakar, H. Huisman and T. Kwee, "The Effect of Image Resampling on the Performance of Radiomics-Based Artificial Intelligence in Multicenter Prostate
MRI ", Journal of Magnetic Resonance Imaging, 2023. - C. Jacobs, "Challenges and outlook in the management of pulmonary nodules detected on CT", European Radiology, 2023;34:247-249.
- B. Katende, M. Bresser, M. Kamele, L. Chere, M. Tlahali, R. Erhardt, J. Muhairwe, I. Ayakaka, T. Glass, M. Ruhwald, B. van Ginneken, K. Murphy, M. de Vos, A. Amstutz, M. Mareka, S. Mooko, K. Reither and L. González Fernández, "Impact of a multi-disease integrated screening and diagnostic model for COVID-19, TB, and HIV in Lesotho", PLOS Global Public Health, 2023;3:e0001488.
- K. Venkadesh, T. Aleef, E. Scholten, Z. Saghir, M. Silva, N. Sverzellati, U. Pastorino, B. van Ginneken, M. Prokop and C. Jacobs, "Prior CT Improves Deep Learning for Malignancy Risk Estimation of Screening-detected Pulmonary Nodules", Radiology, 2023;308(2):e223308.
- S. Dooper, H. Pinckaers, W. Aswolinskiy, K. Hebeda, S. Jarkman, J. van der Laak and G. Litjens, "Gigapixel end-to-end training using streaming and attention", Medical Image Analysis, 2023;88:102881.
- S. Scharm, C. Schaefer-Prokop, H. Winther, C. Huisinga, T. Werncke, J. Vogel-Claussen, F. Wacker and H. Shin, "Regional Pulmonary Morphology and Function: Photon-counting CT Assessment", Radiology, 2023;308.
- W. Hendrix, M. Rutten, N. Hendrix, B. van Ginneken, C. Schaefer-Prokop, E. Scholten, M. Prokop and C. Jacobs, "Trends in the incidence of pulmonary nodules in chest computed tomography: 10-year results from two Dutch hospitals", European Radiology, 2023;33:8279-8288.
- J. Bokhorst, I. Nagtegaal, F. Fraggetta, S. Vatrano, W. Mesker, M. Vieth, J. van der Laak and F. Ciompi, "Deep learning for multi-class semantic segmentation enables colorectal cancer detection and classification in digital pathology images", Scientific Reports, 2023;13:8398.
- M. Palmer, J. Seddon, M. van der Zalm, A. Hesseling, P. Goussard, H. Schaaf, J. Morrison, B. van Ginneken, J. Melendez, E. Walters and K. Murphy, "Optimising computer aided detection to identify intra-thoracic tuberculosis on chest x-ray in South African children", PLOS Global Public Health, 2023;3:e0001799.
- A. van der Kamp, T. de Bel, L. van Alst, J. Rutgers, M. van den Heuvel-Eibrink, A. Mavinkurve-Groothuis, J. van der Laak and R. de Krijger, "Automated Deep Learning-Based Classification of Wilms Tumor Histopathology", Cancers, 2023;15:2656.
- B. Laarhuis, M. Janssen, M. Simons, L. van Kalmthout, M. van der Doelen, S. Peters, H. Westdorp, I. van Oort, G. Litjens, M. Gotthardt, J. Nagarajah, N. Mehra and B. Prive, "Tumoral Ki67 and PSMA Expression in Fresh Pre-PSMA-RLT Biopsies and Its Relation With PSMA-PET Imaging and Outcomes of PSMA-RLT in Patients With mCRPC.", Clinical Genitourinary Cancer, 2023.
- M. Schuurmans, N. Alves, P. Vendittelli, H. Huisman and J. Hermans, "Artificial Intelligence in Pancreatic Ductal Adenocarcinoma Imaging: A Commentary on Potential Future Applications.", Gastroenterology, 2023.
- J. Bokhorst, I. Nagtegaal, I. Zlobec, H. Dawson, K. Sheahan, F. Simmer, R. Kirsch, M. Vieth, A. Lugli, J. van der Laak and F. Ciompi, "Semi-Supervised Learning to Automate Tumor Bud Detection in Cytokeratin-Stained Whole-Slide Images of Colorectal Cancer", Cancers, 2023;15(7):2079.
- M. Omar, S. MacLennan, M. Ribal, M. Roobol, K. Dimitropoulos, T. van den Broeck, S. MacLennan, S. Axelsson, G. Gandaglia, P. Willemse, K. Mastris, J. Ransohoff, Z. Devecseri, T. Abbott, B. De Meulder, A. Bjartell, A. Asiimwe, J. N'Dow, E. Smith, K. Plass, N. Mottet, R. Shepherd, L. Moris, M. Lardas, N. Fossati, K. Pang, R. Campi, I. Greco, M. Gacci, S. Serni, R. Lonnerbro, A. Briganti, D. Crosti, R. Garzonio, M. Faticoni, C. Bangma, E. Roest, A. Breederland, S. Remmers, D. Tilki, A. Auvinen, T. Murtola, T. Visakorpi, K. Talala, T. Tammela, A. Siltari, M. Van Hemelrijck, K. Beyer, S. Lejeune, L. Colette, S. Caputova, D. Poli, S. van Dorp, S. Byrne, L. Fialho, A. Rowland, N. Tapela, F. Ugolini, C. Auffray, N. Taibi, A. Hijazy, A. Saporta, K. Sun, S. Power, N. Kermani, K. van Bochove, M. Moinat, M. Kalafati, A. Tafreshiha, C. Bernini, K. Hlavati, D. Horgan, L. Fullwood, M. Holtorf, D. Lancet, G. Bernstein, S. Tripathee, M. Wirth, M. Froehner, B. Brenner, A. Borkowetz, C. Thomas, F. Horn, K. Reiche, M. Kreuz, A. Josefsson, D. Tandefelt, J. Hugosson, J. Schalken, H. Huisman, T. Hofmarcher, P. Lindgren, E. Andersson, A. Fridhammar, M. Grijalva, F. Verholen, J. Zong, T. Williamson, K. Chandrawansa, R. Waldeck, A. Bruno, R. Herrera, E. Nevedomskaya, S. Fatoba, N. Constantinovici, A. Mohamed, C. Steinbeisser, M. Maass, P. Torremante, E. Dochy, F. Pisa, M. Voss, A. Kiran, K. Papineni, J. Wang-silvanto, R. Snijder, X. Wang, M. Lambrecht, R. Wolfinger, L. Antoni, A. Servan, K. Pascoe, P. Robinson, B. Jaton, D. Bakkard, H. Turunen, O. Kilkku, P. Pohjanjousi, O. Voima, L. Nevalaita, K. Punakivi, C. Reich, S. Seager, S. Ratwani, E. Longden-Chapman, D. Burke, M. Licour, S. Payne, A. Yong, F. Lujan, S. Le Mare, J. Hendrich, M. Bussmann, G. Juckeland, D. Kotik and T. Consortium, "Unanswered questions in prostate cancer -- findings of an international multi-stakeholder consensus by the PIONEER consortium", Nature Reviews Urology, 2023;20:494-501.
- R. Zoetmulder, L. Baak, N. Khalili, H. Marquering, N. Wagenaar, M. Benders, N. van der Aa and I. Isgum, "Brain segmentation in patients with perinatal arterial ischemic stroke", NeuroImage: Clinical, 2023;38:103381.
- G. Sidorenkov, R. Stadhouders, C. Jacobs, F. Mohamed Hoesein, H. Gietema, K. Nackaerts, Z. Saghir, M. Heuvelmans, H. Donker, J. Aerts, R. Vermeulen, A. Uitterlinden, V. Lenters, J. van Rooij, C. Schaefer-Prokop, H. Groen, P. de Jong, R. Cornelissen, M. Prokop, G. de Bock and R. Vliegenthart, "Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial.", European journal of epidemiology, 2023;38(4):445-454.
- J. Bogaerts, M. van Bommel, R. Hermens, M. Steenbeek, J. de Hullu, J. van der Laak, M. Simons and S. consortium, "Consensus based recommendations for the diagnosis of serous tubal intraepithelial carcinoma: an international Delphi study", Histopathology, 2023;83:67-79.
- W. Xie, C. Jacobs, J. Charbonnier and B. van Ginneken, "Dense regression activation maps for lesion segmentation in CT scans of COVID-19 patients", Medical Image Analysis, 2023;86:102771.
- L. van Eekelen, G. Litjens and K. Hebeda, "Artificial intelligence in bone marrow histological diagnostics: potential applications and challenges.", Pathobiology, 2023.
- R. Togawa, A. Pfob, C. Büsch, Z. Alwafai, C. Balleyguier, D. Clevert, V. Duda, S. Fastner, M. Goncalo, C. Gomez, I. Gruber, M. Hahn, A. Hennigs, P. Kapetas, J. Nees, R. Ohlinger, F. Riedel, M. Rutten, B. Schäfgen, A. Stieber, M. Tozaki, S. Wojcinski, G. Rauch, J. Heil, R. Barr and M. Golatta, "Potential of Lesion-to-Fat Elasticity Ratio Measured by Shear Wave Elastography to Reduce Benign Biopsies in
BI-RADS 4 Breast Lesions", Journal of Ultrasound in Medicine, 2023;42:1729-1736. - A. Baidoshvili, M. Khacheishvili, J. van der Laak and P. van Diest, "A whole-slide imaging based workflow reduces the reading time of pathologists", Pathology International, 2023;73:127-134.
- L. Hu, C. Fu, X. Song, R. Grimm, H. von Busch, T. Benkert, A. Kamen, B. Lou, H. Huisman, A. Tong, T. Penzkofer, M. Choi, I. Shabunin, D. Winkel, P. Xing, D. Szolar, F. Coakley, S. Shea, E. Szurowska, J. Guo, L. Li, Y. Li and J. Zhao, "Automated deep-learning system in the assessment of MRI-visible prostate cancer: comparison of advanced zoomed diffusion-weighted imaging and conventional technique.", Cancer imaging : the official publication of the International Cancer Imaging Society, 2023;23(1):6.
- S. Sadr, H. Mohammad-Rahimi, S. Motamedian, S. Zahedrozegar, P. Motie, S. Vinayahalingam, O. Dianat and A. Nosrat, "Deep Learning for Detection of Periapical Radiolucent Lesions: A Systematic Review and Meta-analysis of Diagnostic Test Accuracy.", Journal of endodontics, 2023;49(3):248-261.e3.
- J. Linmans, S. Elfwing, J. van der Laak and G. Litjens, "Predictive uncertainty estimation for out-of-distribution detection in digital pathology.", Medical Image Analysis, 2023;83:102655.
- F. Peisen, A. Gerken, A. Hering, I. Dahm, K. Nikolaou, S. Gatidis, T. Eigentler, T. Amaral, J. Moltz and A. Othman, "Can Whole-Body Baseline CT Radiomics Add Information to the Prediction of Best Response, Progression-Free Survival, and Overall Survival of Stage IV Melanoma Patients Receiving First-Line Targeted Therapy: A Retrospective Register Study", Diagnostics, 2023;13:3210.
- K. Leeuwen, M. Becks, D. Grob, F. de Lange, J. Rutten, S. Schalekamp, M. Rutten, B. van Ginneken, M. de Rooij and F. Meijer, "AI-support for the detection of intracranial large vessel occlusions: One-year prospective evaluation", Heliyon, 2023;9(8).
- D. Page, G. Broeckx, C. Jahangir, S. Verbandt, R. Gupta, J. Thagaard, R. Khiroya, Z. Kos, K. Abduljabbar, G. Acosta Haab, B. Acs, G. Akturk, J. Almeida, I. Alvarado-Cabrero, F. Azmoudeh-Ardalan, S. Badve, N. Baharun, E. Bellolio, V. Bheemaraju, K. Blenman, L. Mendonça Botinelly Fujimoto, N. Bouchmaa, O. Burgues, M. Cheang, F. Ciompi, L. Cooper, A. Coosemans, G. Corredor, F. Dantas Portela, F. Deman, S. Demaria, S. Dudgeon, M. Elghazawy, S. Ely, C. Fernandez-Martín, S. Fineberg, S. Fox, W. Gallagher, J. Giltnane, S. Gnjatic, P. Gonzalez-Ericsson, A. Grigoriadis, N. Halama, M. Hanna, A. Harbhajanka, A. Hardas, S. Hart, J. Hartman, S. Hewitt, A. Hida, H. Horlings, Z. Husain, E. Hytopoulos, S. Irshad, E. Janssen, M. Kahila, T. Kataoka, K. Kawaguchi, D. Kharidehal, A. Khramtsov, U. Kiraz, P. Kirtani, L. Kodach, K. Korski, A. Kovács, A. Laenkholm, C. Lang-Schwarz, D. Larsimont, J. Lennerz, M. Lerousseau, X. Li, A. Ly, A. Madabhushi, S. Maley, V. Manur Narasimhamurthy, D. Marks, E. McDonald, R. Mehrotra, S. Michiels, F. Minhas, S. Mittal, D. Moore, S. Mushtaq, H. Nighat, T. Papathomas, F. Penault-Llorca, R. Perera, C. Pinard, J. Pinto-Cardenas, G. Pruneri, L. Pusztai, A. Rahman, N. Rajpoot, B. Rapoport, T. Rau, J. Reis-Filho, J. Ribeiro, D. Rimm, A. Vincent-Salomon, M. Salto-Tellez, J. Saltz, S. Sayed, K. Siziopikou, C. Sotiriou, A. Stenzinger, M. Sughayer, D. Sur, F. Symmans, S. Tanaka, T. Taxter, S. Tejpar, J. Teuwen, E. Thompson, T. Tramm, W. Tran, J. van der Laak, P. van Diest, G. Verghese, G. Viale, M. Vieth, N. Wahab, T. Walter, Y. Waumans, H. Wen, W. Yang, Y. Yuan, S. Adams, J. Bartlett, S. Loibl, C. Denkert, P. Savas, S. Loi, R. Salgado and E. Specht Stovgaard, "Spatial analyses of immune cell infiltration in cancer: current methods and future directions: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer", The Journal of Pathology, 2023;260:514-532.
- W. Xie, C. Jacobs, J. Charbonnier, D. Slebos and B. van Ginneken, "Emphysema subtyping on thoracic computed tomography scans using deep neural networks", Scientific Reports, 2023;13:14147.
- L. Thijssen, M. de Rooij, J. Barentsz and H. Huisman, "Radiomics based automated quality assessment for T2W prostate MR images", European Journal of Radiology, 2023.
- K. van Leeuwen, M. de Rooij, S. Schalekamp, B. van Ginneken and M. Rutten, "Clinical use of artificial intelligence products for radiology in the Netherlands between 2020 and 2022", European Radiology, 2023.
- J. Thagaard, G. Broeckx, D. Page, C. Jahangir, S. Verbandt, Z. Kos, R. Gupta, R. Khiroya, K. Abduljabbar, G. Acosta Haab, B. Acs, G. Akturk, J. Almeida, I. Alvarado-Cabrero, M. Amgad, F. Azmoudeh-Ardalan, S. Badve, N. Baharun, E. Balslev, E. Bellolio, V. Bheemaraju, K. Blenman, L. Mendonça Botinelly Fujimoto, N. Bouchmaa, O. Burgues, A. Chardas, M. U Chon Cheang, F. Ciompi, L. Cooper, A. Coosemans, G. Corredor, A. Dahl, F. Dantas Portela, F. Deman, S. Demaria, J. Doré Hansen, S. Dudgeon, T. Ebstrup, M. Elghazawy, C. Fernandez-Martín, S. Fox, W. Gallagher, J. Giltnane, S. Gnjatic, P. Gonzalez-Ericsson, A. Grigoriadis, N. Halama, M. Hanna, A. Harbhajanka, S. Hart, J. Hartman, S. Hauberg, S. Hewitt, A. Hida, H. Horlings, Z. Husain, E. Hytopoulos, S. Irshad, E. Janssen, M. Kahila, T. Kataoka, K. Kawaguchi, D. Kharidehal, A. Khramtsov, U. Kiraz, P. Kirtani, L. Kodach, K. Korski, A. Kovács, A. Laenkholm, C. Lang-Schwarz, D. Larsimont, J. Lennerz, M. Lerousseau, X. Li, A. Ly, A. Madabhushi, S. Maley, V. Manur Narasimhamurthy, D. Marks, E. McDonald, R. Mehrotra, S. Michiels, F. Minhas, S. Mittal, D. Moore, S. Mushtaq, H. Nighat, T. Papathomas, F. Penault-Llorca, R. Perera, C. Pinard, J. Pinto-Cardenas, G. Pruneri, L. Pusztai, A. Rahman, N. Rajpoot, B. Rapoport, T. Rau, J. Reis-Filho, J. Ribeiro, D. Rimm, A. Roslind, A. Vincent-Salomon, M. Salto-Tellez, J. Saltz, S. Sayed, E. Scott, K. Siziopikou, C. Sotiriou, A. Stenzinger, M. Sughayer, D. Sur, S. Fineberg, F. Symmans, S. Tanaka, T. Taxter, S. Tejpar, J. Teuwen, E. Thompson, T. Tramm, W. Tran, J. van der Laak, P. van Diest, G. Verghese, G. Viale, M. Vieth, N. Wahab, T. Walter, Y. Waumans, H. Wen, W. Yang, Y. Yuan, R. Zin, S. Adams, J. Bartlett, S. Loibl, C. Denkert, P. Savas, S. Loi, R. Salgado and E. Specht Stovgaard, "Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer", The Journal of Pathology, 2023;260:498-513.
- M. Polack, M. Smit, S. Crobach, V. Terpstra, A. Roodvoets, E. Meershoek-Klein Kranenbarg, E. Dequeker, J. van der Laak, R. Tollenaar, H. van Krieken and W. Mesker, "Uniform Noting for International application of the Tumor-stroma ratio as Easy Diagnostic tool: The UNITED study - An update", European Journal of Surgical Oncology, 2023;49:e132-e133.
- J. van der Graaf, R. Kroeze, C. Buckens, N. Lessmann and M. van Hooff, "MRI image features with an evident relation to low back pain: a narrative review", European Spine Journal, 2023:1-12.
- B. de Wilde, A. Saha, R. Broek and H. Huisman, "Medical diffusion on a budget: textual inversion for medical image generation", 0, 2023.
- M. Smit, F. Ciompi, J. Bokhorst, G. van Pelt, O. Geessink, H. Putter, R. Tollenaar, J. van Krieken, W. Mesker and J. van der Laak, "Deep learning based tumor-stroma ratio scoring in colon cancer correlates with microscopic assessment", Journal of Pathology Informatics, 2023.
- B. van den Beukel, B. de Wilde, F. Joosten, H. van Goor, W. Venderink, H. Huisman and R. ten Broek, "Quantifiable Measures of Abdominal Wall Motion for Quality Assessment of Cine-MRI Slices in Detection of Abdominal Adhesions", Journal of Imaging, 2023;9(5).
- L. Menotti, G. Silvello, M. Atzori, S. Boytcheva, F. Ciompi, G. Di Nunzio, F. Fraggetta, F. Giachelle, O. Irrera, S. Marchesin, N. Marini, H. Müller and T. Primov, "Modelling digital health data: The ExaMode ontology for computational pathology", Journal of Pathology Informatics, 2023;14:100332.
- A. Hering, L. Hansen, T. Mok, A. Chung, H. Siebert, S. Hager, A. Lange, S. Kuckertz, S. Heldmann, W. Shao, S. Vesal, M. Rusu, G. Sonn, T. Estienne, M. Vakalopoulou, L. Han, Y. Huang, P. Yap, M. Brudfors, Y. Balbastre, S. Joutard, M. Modat, G. Lifshitz, D. Raviv, J. Lv, Q. Li, V. Jaouen, D. Visvikis, C. Fourcade, M. Rubeaux, W. Pan, Z. Xu, B. Jian, F. De Benetti, M. Wodzinski, N. Gunnarsson, J. Sjolund, D. Grzech, H. Qiu, Z. Li, A. Thorley, J. Duan, C. Grosbrohmer, A. Hoopes, I. Reinertsen, Y. Xiao, B. Landman, Y. Huo, K. Murphy, N. Lessmann, B. van Ginneken, A. Dalca and M. Heinrich, "Learn2Reg: Comprehensive Multi-Task Medical Image Registration Challenge, Dataset and Evaluation in the Era of Deep Learning", IEEE Transactions on Medical Imaging, 2023;42:697-712.
- B. de Wilde, F. Joosten, W. Venderink, M. Davidse, J. Geurts, H. Kruijt, A. Vermeulen, B. Martens, M. Schyns, J. Huige, M. de Boer, B. Tonino, H. Zandvoort, K. Lammert, H. Parviainen, A. Vuorinen, S. Syvaranta, R. Vogels, W. Prins, A. Coppola, N. Bossa, R. ten Broek and H. Huisman, "Inter-and Intra-Observer Variability and the Effect of Experience in Cine-MRI for Adhesion Detection", Journal of Imaging, 2023;9(3):55.
- N. Hendrix, W. Hendrix, K. van Dijke, B. Maresch, M. Maas, S. Bollen, A. Scholtens, M. de Jonge, L. Ong, B. van Ginneken and M. Rutten, "Musculoskeletal radiologist-level performance by using deep learning for detection of scaphoid fractures on conventional multi-view radiographs of hand and wrist", European Radiology, 2023;33:1575-1588.
- J.S. Bosma, A. Saha, M. Hosseinzadeh, I. Slootweg, M. de Rooij and H. Huisman, "Semi-supervised Learning with Report-guided Pseudo Labels for Deep Learning-based Prostate Cancer Detection Using Biparametric MRI", Radiology: Artificial Intelligence, 2023:e230031.
- C. De Vente, K. Vermeer, N. Jaccard, H. Wang, H. Sun, F. Khader, D. Truhn, T. Aimyshev, Y. Zhanibekuly, T. Le, A. Galdran, M. Ballester, G. Carneiro, R. Devika, P. Hrishikesh, D. Puthussery, H. Liu, Z. Yang, S. Kondo, S. Kasai, E. Wang, A. Durvasula, J. Heras, M. Zapata, T. Araújo, G. Aresta, H. Bogunović, M. Arikan, Y. Lee, H. Cho, Y. Choi, A. Qayyum, I. Razzak, B. Van Ginneken, H. Lemij and C. Sánchez, "AIROGS: Artificial Intelligence for RObust Glaucoma Screening Challenge", IEEE Transactions on Medical Imaging, 2023:1-1.
- J. Bokhorst, F. Ciompi, S. Öztürk, A. Oguz Erdogan, M. Vieth, H. Dawson, R. Kirsch, F. Simmer, K. Sheahan, A. Lugli, I. Zlobec, J. van der Laak and I. Nagtegaal, "Fully Automated Tumor Bud Assessment in Hematoxylin and Eosin-Stained Whole Slide Images of Colorectal Cancer", Modern Pathology, 2023;36:100233.
- P. Bándi, M. Balkenhol, M. van Dijk, M. Kok, B. van Ginneken, J. van der Laak and G. Litjens, "Continual learning strategies for cancer-independent detection of lymph node metastases", Medical Image Analysis, 2023;85:102755.
- T. van Mourik, P. Koopmans, L. Bains, D. Norris and J. Jehee, "Investigation of layer-specific BOLD signal in the human visual cortex during visual attention", Aperture Neuro, 2023;3.
- L. Canalini, J. Klein, D. Waldmannstetter, F. Kofler, S. Cerri, A. Hering, S. Heldmann, S. Schlaeger, B. Menze, B. Wiestler, J. Kirschke and H. Hahn, "Quantitative evaluation of the influence of multiple MRI sequences and of pathological tissues on the registration of longitudinal data acquired during brain tumor treatment", Frontiers in Neuroimaging, 2022;1.
- P. Bilic, P. Christ, H. Li, E. Vorontsov, A. Ben-Cohen, G. Kaissis, A. Szeskin, C. Jacobs, G. Mamani, G. Chartrand, F. Lohofer, J. Holch, W. Sommer, F. Hofmann, A. Hostettler, N. Lev-Cohain, M. Drozdzal, M. Amitai, R. Vivanti, J. Sosna, I. Ezhov, A. Sekuboyina, F. Navarro, F. Kofler, J. Paetzold, S. Shit, X. Hu, J. Lipkova, M. Rempfler, M. Piraud, J. Kirschke, B. Wiestler, Z. Zhang, C. Hulsemeyer, M. Beetz, F. Ettlinger, M. Antonelli, W. Bae, M. Bellver, L. Bi, H. Chen, G. Chlebus, E. Dam, Q. Dou, C. Fu, B. Georgescu, X. Giro-i-Nieto, F. Gruen, X. Han, P. Heng, J. Hesser, J. Moltz, C. Igel, F. Isensee, P. Jager, F. Jia, K. Kaluva, M. Khened, I. Kim, J. Kim, S. Kim, S. Kohl, T. Konopczynski, A. Kori, G. Krishnamurthi, F. Li, H. Li, J. Li, X. Li, J. Lowengrub, J. Ma, K. Maier-Hein, K. Maninis, H. Meine, D. Merhof, A. Pai, M. Perslev, J. Petersen, J. Pont-Tuset, J. Qi, X. Qi, O. Rippel, K. Roth, I. Sarasua, A. Schenk, Z. Shen, J. Torres, C. Wachinger, C. Wang, L. Weninger, J. Wu, D. Xu, X. Yang, S. Yu, Y. Yuan, M. Yue, L. Zhang, J. Cardoso, S. Bakas, R. Braren, V. Heinemann, C. Pal, A. Tang, S. Kadoury, L. Soler, B. van Ginneken, H. Greenspan, L. Joskowicz and B. Menze, "The Liver Tumor Segmentation Benchmark (LiTS)", Medical Image Analysis, 2022;84:102680.
- M. Aubreville, N. Stathonikos, C. Bertram, R. Klopfleisch, N. Ter Hoeve, F. Ciompi, F. Wilm, C. Marzahl, T. Donovan, A. Maier, J. Breen, N. Ravikumar, Y. Chung, J. Park, R. Nateghi, F. Pourakpour, R. Fick, S. Ben Hadj, M. Jahanifar, A. Shephard, J. Dexl, T. Wittenberg, S. Kondo, M. Lafarge, V. Koelzer, J. Liang, Y. Wang, X. Long, J. Liu, S. Razavi, A. Khademi, S. Yang, X. Wang, R. Erber, A. Klang, K. Lipnik, P. Bolfa, M. Dark, G. Wasinger, M. Veta and K. Breininger, "Mitosis domain generalization in histopathology images - The MIDOG challenge.", Medical Image Analysis, 2022;84:102699.
- L. Adams, M. Makowski, G. Engel, M. Rattunde, F. Busch, P. Asbach, S. Niehues, S. Vinayahalingam, B. van Ginneken, G. Litjens and K. Bressem, "Dataset of prostate MRI annotated for anatomical zones and cancer.", Data in brief, 2022;45:108739.
- S. Vinayahalingam, N. van Nistelrooij, B. van Ginneken, K. Bressem, D. Troltzsch, M. Heiland, T. Flugge and R. Gaudin, "Detection of mandibular fractures on panoramic radiographs using deep learning.", Scientific reports, 2022;12(1):19596.
- E. Calli, B. Van Ginneken, E. Sogancioglu and K. Murphy, "FRODO: An in-depth analysis of a system to reject outlier samples from a trained neural network.", IEEE transactions on medical imaging, 2022;PP.
- S. Jarkman, M. Karlberg, M. Poceviciute, A. Boden, P. Bandi, G. Litjens, C. Lundstrom, D. Treanor and J. van der Laak, "Generalization of Deep Learning in Digital Pathology: Experience in Breast Cancer Metastasis Detection.", Cancers, 2022;14(21).
- C. Mercan, M. Balkenhol, R. Salgado, M. Sherman, P. Vielh, W. Vreuls, A. Polonia, H. Horlings, W. Weichert, J. Carter, P. Bult, M. Christgen, C. Denkert, K. van de Vijver, J. Bokhorst, J. van der Laak and F. Ciompi, "Deep learning for fully-automated nuclear pleomorphism scoring in breast cancer.", NPJ breast cancer, 2022;8(1):120.
- V. Pfaffenrot and P. Koopmans, "Magnetization transfer weighted laminar fMRI with multi-echo FLASH", NeuroImage, 2022;264:119725.
- A. Pfob, C. Sidey-Gibbons, R. Barr, V. Duda, Z. Alwafai, C. Balleyguier, D. Clevert, S. Fastner, C. Gomez, M. Goncalo, I. Gruber, M. Hahn, A. Hennigs, P. Kapetas, S. Lu, J. Nees, R. Ohlinger, F. Riedel, M. Rutten, B. Schaefgen, A. Stieber, R. Togawa, M. Tozaki, S. Wojcinski, C. Xu, G. Rauch, J. Heil and M. Golatta, "Intelligent multi-modal shear wave elastography to reduce unnecessary biopsies in breast cancer diagnosis (INSPiRED 002): a retrospective, international, multicentre analysis", European Journal of Cancer, 2022;177:1-14.
- S. Marchesin, F. Giachelle, N. Marini, M. Atzori, S. Boytcheva, G. Buttafuoco, F. Ciompi, G. Di Nunzio, F. Fraggetta, O. Irrera, H. Muller, T. Primov, S. Vatrano and G. Silvello, "Empowering digital pathology applications through explainable knowledge extraction tools.", Journal of pathology informatics, 2022;13:100139.
- J. Nas, J. Thannhauser, P. Vart, R. van Geuns, H. Muijsers, J. Mol, G. Aarts, L. Konijnenberg, D. Gommans, S. Ahoud-Schoenmakers, J. Vos, N. van Royen, J. Bonnes and M. Brouwer, "The impact of alcohol use on the quality of cardiopulmonary resuscitation among festival attendees: A prespecified analysis of a randomised trial", Resuscitation, 2022;181:12-19.
- Z. Zhai, S. van Velzen, N. Lessmann, N. Planken, T. Leiner and I. Isgum, "Learning coronary artery calcium scoring in coronary CTA from non-contrast CT using unsupervised domain adaptation", Frontiers in Cardiovascular Medicine, 2022;9.
- H. Roth, Z. Xu, C. Tor-Díez, R. Sanchez Jacob, J. Zember, J. Molto, W. Li, S. Xu, B. Turkbey, E. Turkbey, D. Yang, A. Harouni, N. Rieke, S. Hu, F. Isensee, C. Tang, Q. Yu, J. Sölter, T. Zheng, V. Liauchuk, Z. Zhou, J. Moltz, B. Oliveira, Y. Xia, K. Maier-Hein, Q. Li, A. Husch, L. Zhang, V. Kovalev, L. Kang, A. Hering, J. Vilaça, M. Flores, D. Xu, B. Wood and M. Linguraru, "Rapid artificial intelligence solutions in a pandemic--The COVID-19-20 Lung CT Lesion Segmentation Challenge", Medical Image Analysis, 2022;82:102605.
- E. De Kort, J. Buil, S. Schalekamp, C. Schaefer-Prokop, P. Verweij, N. Schaap, N. Blijlevens and W. der Van Velden, "Invasive Fungal Disease in Patients with Myeloid Malignancies: A Retrospective Cohort Study of a Diagnostic-Driven Care Pathway Withholding Mould-Active Prophylaxis", Journal of Fungi, 2022;8:925.
- S. de Roo, J. Teunissen, M. Rutten and B. van der Heijden, "Tourniquet Does Not Affect Long-term Outcomes in Minor Hand Surgery: A Randomized Controlled Trial", Plastic and Reconstructive Surgery - Global Open, 2022;10:e4495.
- T. Eschert, F. Schwendicke, J. Krois, L. Bohner, S. Vinayahalingam and M. Hanisch, "A Survey on the Use of Artificial Intelligence by Clinicians in Dentistry and Oral and Maxillofacial Surgery.", Medicina (Kaunas, Lithuania), 2022;58(8).
- B. Feher, U. Kuchler, F. Schwendicke, L. Schneider, J. de Grano Cejudo Oro, T. Xi, S. Vinayahalingam, T. Hsu, J. Brinz, A. Chaurasia, K. Dhingra, R. Gaudin, H. Mohammad-Rahimi, N. Pereira, F. Perez-Pastor, O. Tryfonos, S. Uribe, M. Hanisch and J. Krois, "Emulating Clinical Diagnostic Reasoning for Jaw Cysts with Machine Learning.", Diagnostics (Basel, Switzerland), 2022;12(8).
- N. Harlianto, J. Westerink, M. Hol, R. Wittenberg, W. Foppen, P. van der Veen, B. van Ginneken, J. Verlaan, P. de Jong, F. Mohamed Hoesein and UCC-SMART Study Group , "Patients with diffuse idiopathic skeletal hyperostosis have an increased burden of thoracic aortic calcifications", Rheumatology Advances in Practice, 2022;6(2):rkac060.
- N. Naik, B. Hameed, N. Sooriyaperakasam, S. Vinayahalingam, V. Patil, K. Smriti, J. Saxena, M. Shah, S. Ibrahim, A. Singh, H. Karimi, K. Naganathan, D. Shetty, B. Rai, P. Chlosta and B. Somani, "Transforming healthcare through a digital revolution: A review of digital healthcare technologies and solutions.", Frontiers in digital health, 2022;4:919985.
- E. Munari, G. Querzoli, M. Brunelli, M. Marconi, M. Sommaggio, M. Cocchi, G. Martignoni, G. Netto, A. Calio, L. Quatrini, F. Mariotti, C. Luchini, I. Girolami, A. Eccher, D. Segala, F. Ciompi, G. Zamboni, L. Moretta and G. Bogina, "Comparison of three validated PD-L1 immunohistochemical assays in urothelial carcinoma of the bladder: interchangeability and issues related to patient selection.", Frontiers in immunology, 2022;13:954910.
- R. Vliegenthart, A. Fouras, C. Jacobs and N. Papanikolaou, "Innovations in thoracic imaging: CT, radiomics, AI and x-ray velocimetry", Respirology, 2022;27(10):818-833.
- J. Maertens, T. Lodewyck, J. Donnelly, S. Chantepie, C. Robin, N. Blijlevens, P. Turlure, D. Selleslag, F. Baron, M. Aoun, W. Heinz, H. Bertz, Z. Ráčil, B. Vandercam, L. Drgona, V. Coiteux, C. Llorente, C. Schaefer-Prokop, M. Paesmans, L. Ameye, L. Meert, K. Cheung, D. Hepler, J. Loeffler, R. Barnes, O. Marchetti, P. Verweij, F. Lamoth, P. Bochud, M. Schwarzinger, C. Cordonnier, F. the Group, T. of the for Research and T. of Cancer, "Empiric vs Preemptive Antifungal Strategy in High-Risk Neutropenic Patients on Fluconazole Prophylaxis: A Randomized Trial of the European Organization for Research and Treatment of Cancer", Clinical Infectious Diseases, 2022;76:674-682.
- E. Calli, K. Murphy, E. Scholten, S. Schalekamp and B. van Ginneken, "Explainable emphysema detection on chest radiographs with deep learning", PLoS One, 2022;17(7):e0267539.
- R. Samperna, N. Moriakov, N. Karssemeijer, J. Teuwen and R. Mann, "Exploiting the Dixon Method for a Robust Breast and Fibro-Glandular Tissue Segmentation in Breast MRI", Diagnostics, 2022;12:1690.
- Y. Beauferris, J. Teuwen, D. Karkalousos, N. Moriakov, M. Caan, G. Yiasemis, L. Rodrigues, A. Lopes, H. Pedrini, L. Rittner, M. Dannecker, V. Studenyak, F. Gröger, D. Vyas, S. Faghih-Roohi, A. Kumar Jethi, J. Chandra Raju, M. Sivaprakasam, M. Lasby, N. Nogovitsyn, W. Loos, R. Frayne and R. Souza, "Multi-Coil MRI Reconstruction Challenge--Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations", Frontiers in Neuroscience, 2022;16.
- N. Marini, S. Marchesin, S. Otalora, M. Wodzinski, A. Caputo, M. van Rijthoven, W. Aswolinskiy, J. Bokhorst, D. Podareanu, E. Petters, S. Boytcheva, G. Buttafuoco, S. Vatrano, F. Fraggetta, J. van der Laak, M. Agosti, F. Ciompi, G. Silvello, H. Muller and M. Atzori, "Unleashing the potential of digital pathology data by training computer-aided diagnosis models without human annotations.", NPJ digital medicine, 2022;5(1):102.
- M. Hermsen, F. Ciompi, A. Adefidipe, A. Denic, A. Dendooven, B. Smith, D. van Midden, J. Brasen, J. Kers, M. Stegall, P. Bándi, T. Nguyen, Z. Swiderska-Chadaj, B. Smeets, L. Hilbrands and J. van der Laak, "Convolutional neural networks for the evaluation of chronic and inflammatory lesions in kidney transplant biopsies", American Journal of Pathology, 2022;192(10):1418-1432.
- L. Adams, M. Makowski, G. Engel, M. Rattunde, F. Busch, P. Asbach, S. Niehues, S. Vinayahalingam, B. van Ginneken, G. Litjens and K. Bressem, "Prostate158 - An expert-annotated 3T MRI dataset and algorithm for prostate cancer detection.", Computers in biology and medicine, 2022;148:105817.
- M. Antonelli, A. Reinke, S. Bakas, K. Farahani, A. Kopp-Schneider, B. Landman, G. Litjens, B. Menze, O. Ronneberger, R. Summers, B. van Ginneken, M. Bilello, P. Bilic, P. Christ, R. Do, M. Gollub, S. Heckers, H. Huisman, W. Jarnagin, M. McHugo, S. Napel, J. Pernicka, K. Rhode, C. Tobon-Gomez, E. Vorontsov, J. Meakin, S. Ourselin, M. Wiesenfarth, P. Arbelaez, B. Bae, S. Chen, L. Daza, J. Feng, B. He, F. Isensee, Y. Ji, F. Jia, I. Kim, K. Maier-Hein, D. Merhof, A. Pai, B. Park, M. Perslev, R. Rezaiifar, O. Rippel, I. Sarasua, W. Shen, J. Son, C. Wachinger, L. Wang, Y. Wang, Y. Xia, D. Xu, Z. Xu, Y. Zheng, A. Simpson, L. Maier-Hein and M. Cardoso, "The Medical Segmentation Decathlon", Nature Communications, 2022;13(1):4128.
- J. Ogony, T. de Bel, D. Radisky, J. Kachergus, E. Thompson, A. Degnim, K. Ruddy, T. Hilton, M. Stallings-Mann, C. Vachon, T. Hoskin, M. Heckman, R. Vierkant, L. White, R. Moore, J. Carter, M. Jensen, L. Pacheco-Spann, J. Henry, A. Storniolo, S. Winham, J. van der Laak and M. Sherman, "Towards defining morphologic parameters of normal parous and nulliparous breast tissues by artificial intelligence", Breast Cancer Research, 2022;24.
- Q. Qin, D. Alsop, D. Bolar, L. Hernandez-Garcia, J. Meakin, D. Liu, K. Nayak, S. Schmid, M. van Osch, E. Wong, J. Woods, G. Zaharchuk, M. Zhao, Z. Zun, J. Guo and T. Group, "Velocity-selective arterial spin labeling perfusion MRI: A review of the state of the art and recommendations for clinical implementation", Magnetic Resonance in Medicine, 2022;88:1528-1547.
- V. Bergshoeff, M. Balkenhol, A. Haesevoets, A. Ruland, M. Chenault, R. Nelissen, C. Peutz, R. Clarijs, J. der Van Laak, R. Takes, M. den Van Brekel, M. Van Velthuysen, F. Ramaekers, B. Kremer and E. Speel, "Evaluation Criteria for Chromosome Instability Detection by FISH to Predict Malignant Progression in Premalignant Glottic Laryngeal Lesions", Cancers, 2022;14:3260.
- F. Peisen, A. Hänsch, A. Hering, A. Brendlin, S. Afat, K. Nikolaou, S. Gatidis, T. Eigentler, T. Amaral, J. Moltz and A. Othman, "Combination of Whole-Body Baseline CT Radiomics and Clinical Parameters to Predict Response and Survival in a Stage-IV Melanoma Cohort Undergoing Immunotherapy", Cancers, 2022;14:2992.
- G. Litjens, F. Ciompi and J. van der Laak, "A Decade of GigaScience: The Challenges of Gigapixel Pathology Images.", GigaScience, 2022;11.
- H. Pinckaers, J. van Ipenburg, J. Melamed, A. De Marzo, E. Platz, B. van Ginneken, J. van der Laak and G. Litjens, "Predicting biochemical recurrence of prostate cancer with artificial intelligence", Communications Medicine, 2022;2:64.
- K. Koschmieder, M. Paul, T. van den Heuvel, A. van der Eerden, B. van Ginneken and R. Manniesing, "Automated detection of cerebral microbleeds via segmentation in susceptibility-weighted images of patients with traumatic brain injury", NeuroImage: Clinical, 2022;35:103027.
- J. Nas, J. Thannhauser, L. Konijnenberg, R. van Geuns, N. van Royen, J. Bonnes and M. Brouwer, "Long-term Effect of Face-to-Face vs Virtual Reality Cardiopulmonary Resuscitation (CPR) Training on Willingness to Perform CPR, Retention of Knowledge, and Dissemination of CPR Awareness", JAMA Network Open, 2022;5:e2212964.
- C. de Vente, L. Boulogne, K. Venkadesh, C. Sital, N. Lessmann, C. Jacobs, C. Sánchez and B. van Ginneken, "Automated COVID-19 Grading with Convolutional Neural Networks in Computed Tomography Scans: A Systematic Comparison", IEEE Transactions on Artificial Intelligence, 2022;3(2):129-138.
- R. Scheeringa, M. Bonnefond, T. van Mourik, O. Jensen, D. Norris and P. Koopmans, "Relating neural oscillations to laminar fMRI connectivity in visual cortex", Cerebral Cortex, 2022;33:1537-1549.
- M. Sherman, T. de Bel, M. Heckman, L. White, J. Ogony, M. Stallings-Mann, T. Hilton, A. Degnim, R. Vierkant, T. Hoskin, M. Jensen, L. Pacheco-Spann, J. Henry, A. Storniolo, J. Carter, S. Winham, D. Radisky and J. van der Laak, "Serum hormone levels and normal breast histology among premenopausal women", Breast Cancer Research and Treatment, 2022;194:149-158.
- I. Girolami, L. Pantanowitz, S. Marletta, M. Hermsen, J. van der Laak, E. Munari, L. Furian, F. Vistoli, G. Zaza, M. Cardillo, L. Gesualdo, G. Gambaro and A. Eccher, "Artificial intelligence applications for pre-implantation kidney biopsy pathology practice: a systematic review.", Journal of nephrology, 2022.
- A. Lauritzen, A. Rodríguez-Ruiz, M. von Euler-Chelpin, E. Lynge, I. Vejborg, M. Nielsen, N. Karssemeijer and M. Lillholm, "An Artificial Intelligence-based Mammography Screening Protocol for Breast Cancer: Outcome and Radiologist Workload", Radiology, 2022;304:41-49.
- J. Bleker, T. Kwee, D. Rouw, C. Roest, J. Borstlap, I. de Jong, R. Dierckx, H. Huisman and D. Yakar, "A deep learning masked segmentation alternative to manual segmentation in biparametric MRI prostate cancer radiomics", European Radiology, 2022;32:6526-6535.
- E. Sogancioglu, K. Murphy, E. Th Scholten, L. Boulogne, M. Prokop and B. van Ginneken, "Automated estimation of total lung volume using chest radiographs and deep learning", Medical Physics, 2022;49(7):4466-4477.
- S. Scharm, C. Schaefer-Prokop, M. Willmann, J. Vogel-Claussen, L. Knudsen, D. Jonigk, J. Fuge, T. Welte, F. Wacker, A. Prasse and H. Shin, "Increased regional ventilation as early imaging marker for future disease progression of interstitial lung disease: a feasibility study", European Radiology, 2022;32:6046-6057.
- J. Thannhauser, J. Nas, K. van der Sluijs, H. Zwart, M. de Boer, N. van Royen, J. Bonnes and M. Brouwer, "Pilot study on VF-waveform based algorithms for early detection of acute myocardial infarction during out-of-hospital cardiac arrest", Resuscitation, 2022;174:62-67.
- S. Satturwar, I. Girolami, E. Munari, F. Ciompi, A. Eccher and L. Pantanowitz, "Program death ligand-1 immunocytochemistry in lung cancer cytological samples: A systematic review.", Diagnostic cytopathology, 2022;50(6):313-323.
- A. van der Kamp, T. Waterlander, T. de Bel, J. van der Laak, M. van den Heuvel-Eibrink, A. Mavinkurve-Groothuis and R. de Krijger, "Artificial Intelligence in Pediatric Pathology: The Extinction of a Medical Profession or the Key to a Bright Future?", Pediatric and Developmental Pathology, 2022;25:380-387.
- Y. Chen, S. Vinayahalingam, S. Berge, Y. Liao, T. Maal and T. Xi, "Is the pattern of mandibular asymmetry in mild craniofacial microsomia comparable to non-syndromic class II asymmetry?", Clinical oral investigations, 2022;26(6):4603-4613.
- B. Sturm, D. Creytens, J. Smits, A. Ooms, E. Eijken, E. Kurpershoek, H. Küsters-Vandevelde, C. Wauters, W. Blokx and J. van der Laak, "Computer-Aided Assessment of Melanocytic Lesions by Means of a Mitosis Algorithm", Diagnostics, 2022;12:436.
- A. Pfob, C. Sidey-Gibbons, R. Barr, V. Duda, Z. Alwafai, C. Balleyguier, D. Clevert, S. Fastner, C. Gomez, M. Goncalo, I. Gruber, M. Hahn, A. Hennigs, P. Kapetas, S. Lu, J. Nees, R. Ohlinger, F. Riedel, M. Rutten, B. Schaefgen, M. Schuessler, A. Stieber, R. Togawa, M. Tozaki, S. Wojcinski, C. Xu, G. Rauch, J. Heil and M. Golatta, "The importance of multi-modal imaging and clinical information for humans and AI-based algorithms to classify breast masses (INSPiRED 003): an international, multicenter analysis", European Radiology, 2022;32:4101-4115.
- L. Bohner, S. Vinayahalingam, J. Kleinheinz and M. Hanisch, "Digital Implant Planning in Patients with Ectodermal Dysplasia: Clinical Report.", International journal of environmental research and public health, 2022;19(3).
- A. Wanders, W. Mees, P. Bun, N. Janssen, A. Rodríguez-Ruiz, M. Dalmış, N. Karssemeijer, C. van Gils, I. Sechopoulos, R. Mann and C. van Rooden, "Interval Cancer Detection Using a Neural Network and Breast Density in Women with Negative Screening Mammograms", Radiology, 2022;303:269-275.
- G. Bozovic, C. Schaefer-Prokop and A. Bankier, "Pulmonary functional imaging (PFI): A historical review and perspective", Acta Radiologica, 2022;64:90-100.
- M. Schilpzand, C. Neff, J. van Dillen, B. van Ginneken, T. Heskes, C. de Korte and T. van den Heuvel, "Automatic Placenta Localization From Ultrasound Imaging in a Resource-Limited Setting Using a Predefined Ultrasound Acquisition Protocol and Deep Learning.", Ultrasound in medicine & biology, 2022;48(4):663-674.
- T. de Bel, G. Litjens, J. Ogony, M. Stallings-Mann, J. Carter, T. Hilton, D. Radisky, R. Vierkant, B. Broderick, T. Hoskin, S. Winham, M. Frost, D. Visscher, T. Allers, A. Degnim, M. Sherman and J. van der Laak, "Automated quantification of levels of breast terminal duct lobular (TDLU) involution using deep learning", npj Breast Cancer, 2022;8.
- W. Bulten, K. Kartasalo, P. Chen, P. Strom, H. Pinckaers, K. Nagpal, Y. Cai, D. Steiner, H. van Boven, R. Vink, C. de Hulsbergen-van Kaa, J. van der Laak, M. Amin, A. Evans, T. van der Kwast, R. Allan, P. Humphrey, H. Gronberg, H. Samaratunga, B. Delahunt, T. Tsuzuki, T. Hakkinen, L. Egevad, M. Demkin, S. Dane, F. Tan, M. Valkonen, G. Corrado, L. Peng, C. Mermel, P. Ruusuvuori, G. Litjens, M. Eklund, A. Brilhante, A. Cakir, X. Farre, K. Geronatsiou, V. Molinie, G. Pereira, P. Roy, G. Saile, P. Salles, E. Schaafsma, J. Tschui, J. Billoch-Lima, E. Pereira, M. Zhou, S. He, S. Song, Q. Sun, H. Yoshihara, T. Yamaguchi, K. Ono, T. Shen, J. Ji, A. Roussel, K. Zhou, T. Chai, N. Weng, D. Grechka, M. Shugaev, R. Kiminya, V. Kovalev, D. Voynov, V. Malyshev, E. Lapo, M. Campos, N. Ota, S. Yamaoka, Y. Fujimoto, K. Yoshioka, J. Juvonen, M. Tukiainen, A. Karlsson, R. Guo, C. Hsieh, I. Zubarev, H. Bukhar, W. Li, J. Li, W. Speier, C. Arnold, K. Kim, B. Bae, Y. Kim, H. Lee, J. Park and the PANDA challenge consortium, "Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge", Nature Medicine, 2022.
- L. Miesen, P. Bándi, B. Willemsen, F. Mooren, T. Strieder, E. Boldrini, V. Drenic, J. Eymael, R. Wetzels, J. Lotz, N. Weiss, E. Steenbergen, T. van Kuppevelt, M. van Erp, J. van der Laak, N. Endlich, M. Moeller, J. Wetzels, J. Jansen and B. Smeets, "Parietal epithelial cells maintain the epithelial cell continuum forming Bowman's space in focal segmental glomerulosclerosis", Disease Models & Mechanisms, 2022;15.
- M. Golatta, A. Pfob, C. Büsch, T. Bruckner, Z. Alwafai, C. Balleyguier, D. Clevert, V. Duda, M. Goncalo, I. Gruber, M. Hahn, P. Kapetas, R. Ohlinger, M. Rutten, R. Togawa, M. Tozaki, S. Wojcinski, G. Rauch, J. Heil and R. Barr, "The potential of combined shear wave and strain elastography to reduce unnecessary biopsies in breast cancer diagnostics - An international, multicentre trial", European Journal of Cancer, 2022;161:1-9.
- A. Schreuder, C. Jacobs, N. Lessmann, M. Broeders, M. Silva, I. Isgum, P. de Jong, M. van den Heuvel, N. Sverzellati, M. Prokop, U. Pastorino, C. Schaefer-Prokop and B. van Ginneken, "Scan-based competing death risk model for reevaluating lung cancer computed tomography screening eligibility", European Respiratory Journal, 2022;59(5):2101613.
- K. van Leeuwen, M. de Rooij, S. Schalekamp, B. van Ginneken and M. Rutten, "How does artificial intelligence in radiology improve efficiency and health outcomes?", Pediatric Radiology, 2022;52(11):2087-2093.
- M. den Van Bempt, S. Vinayahalingam, M. Han, S. Berge and T. Xi, "The role of muscular traction in the occurrence of skeletal relapse after advancement bilateral sagittal split osteotomy (BSSO): A systematic review.", Orthodontics & craniofacial research, 2022;25(1):1-13.
- J. Noothout, N. Lessmann, M. Eede, L. van Harten, E. Sogancioglu, F. Heslinga, M. Veta, B. van Ginneken and I. Isgum, "Knowledge distillation with ensembles of convolutional neural networks for medical image segmentation", Journal of Medical Imaging, 2022.
- J. van der Laak, K. Grünberg, A. Frisk and P. Moulin, "BUILDING AN E.U.-SCALE DIGITAL PATHOLOGY REPOSITORY: THE BIGPICTURE INITIATIVE", Journal of Pathology Informatics, 2022;13:100026.
- S. Labus, M. Altmann, H. Huisman, A. Tong, T. Penzkofer, M. Choi, I. Shabunin, D. Winkel, P. Xinga, D. Szolar, S. Shea, R. Grimm, H. von Busch, A. Kamen, T. Herold and C. Baumann, "A concurrent, deep learning-based computer-aided detection system for prostate multiparametric MRI: a performance study involving experienced and less-experienced radiologists", European Radiology, 2022.
- G. Chlebus, A. Schenk, H. Hahn, B. Van Ginneken and H. Meine, "Robust Segmentation Models Using an Uncertainty Slice Sampling-Based Annotation Workflow", IEEE Access, 2022;10:4728-4738.
- M. Schuurmans, N. Alves, P. Vendittelli, H. Huisman and J. Hermans, "Setting the Research Agenda for Clinical Artificial Intelligence in Pancreatic Adenocarcinoma Imaging", Cancers, 2022:3498.
- C. Roest, T. Kwee, A. Saha, J. Futterer, D. Yakar and H. Huisman, "AI-Assisted Biparametric MRI Surveillance of Prostate Cancer: Feasibility Study", European Radiology, 2022.
- M. Schaap, N. Cardozo, A. Patel, E. de Jong, B. van Ginneken and M. Seyger, "Image-based automated Psoriasis Area Severity Index scoring by Convolutional Neural Networks", Journal of the European Academy of Dermatology and Venereology, 2022;36(1):68-75.
- M. Huisman and N. Lessmann, "Automatic Brand Identification of Orthopedic Implants from Radiographs: Ready for the Next Step?", Radiology: Artificial Intelligence, 2022;4(2):e220008.
- B. van Ginneken, "Tuberculosis Detection from Chest Radiographs: Stop Training Radiologists Now", Radiology, 2022;00:1-2.
- M. Sunoqrot, A. Saha, M. Hosseinzadeh, M. Elschot and H. Huisman, "Artificial Intelligence for Prostate MRI: Open Datasets, Available Applications, and Grand Challenges", European Radiology Experimental, 2022:35.
- S. Otálora, N. Marini, D. Podareanu, R. Hekster, D. Tellez, J. Der Van Laak, H. Müller and M. Atzori, "stainlib: a python library for augmentation and normalization of histopathology H&E images", Preprint, 2022.
- S. Schalekamp, W. Klein and K. van Leeuwen, "Current and emerging artificial intelligence applications in chest imaging: a pediatric perspective", Pediatric Radiology, 2022;52(11):2120-2130.
- M. D'Amato, P. Szostak and B. Torben-Nielsen, "A Comparison Between Single- and Multi-Scale Approaches for Classification of Histopathology Images", Frontiers in Public Health, 2022;10.
- L. Hadjiiski, K. Cha, H. Chan, K. Drukker, L. Morra, J. Nappi, B. Sahiner, H. Yoshida, Q. Chen, T. Deserno, H. Greenspan, H. Huisman, Z. Huo, R. Mazurchuk, N. Petrick, D. Regge, R. Samala, R. Summers, K. Suzuki, G. Tourassi, D. Vergara and S. III, "AAPM task group report 273: Recommendations on best practices for AI and machine learning for computer-aided diagnosis in medical imaging", Medical Physics, 2022.
- E. Chelebian, F. Ciompi and C. Wählby, "Seeded iterative clustering for histology region identification", 5, 2022.
- N. Alves, M. Schuurmans, G. Litjens, J.S. Bosma, J. Hermans and H. Huisman, "Fully Automatic Deep Learning Framework for Pancreatic Ductal Adenocarcinoma Detection on Computed Tomography", Cancers, 2022:376.
- S. Zhou, H. Greenspan, C. Davatzikos, J. Duncan, B. Van Ginneken, A. Madabhushi, J. Prince, D. Rueckert and R. Summers, "A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises", Proceedings of the IEEE, 2021;109:820-838.
- C. González-Gonzalo, E. Thee, C. Klaver, A. Lee, R. Schlingemann, A. Tufail, F. Verbraak and C. Sánchez, "Trustworthy AI: Closing the gap between development and integration of AI systems in ophthalmic practice", Progress in Retinal and Eye Research, 2021.
- C. Jacobs, A. Setio, E. Scholten, P. Gerke, H. Bhattacharya, F. M. Hoesein, M. Brink, E. Ranschaert, P. de Jong, M. Silva, B. Geurts, K. Chung, S. Schalekamp, J. Meersschaert, A. Devaraj, P. Pinsky, S. Lam, B. van Ginneken and K. Farahani, "Deep Learning for Lung Cancer Detection in Screening CT Scans: Results of a Large-Scale Public Competition and an Observer Study with 11 Radiologists", Radiology: Artificial Intelligence, 2021;3(6):e210027.
- M. Yousif, P. van Diest, A. Laurinavicius, D. Rimm, J. van der Laak, A. Madabhushi, S. Schnitt and L. Pantanowitz, "Artificial intelligence applied to breast pathology", Virchows Archiv, 2021;480:191-209.
- N. Harlianto, N. Oosterhof, W. Foppen, M. Hol, R. Wittenberg, P. van der Veen, B. van Ginneken, F. Mohamed Hoesein, J. Verlaan, P. de Jong, J. Westerink, R. van Petersen, B. van Dinther, F. Asselbergs, H. Nathoe, G. de Borst, M. Bots, M. Geerlings, M. Emmelot, P. de Jong, T. Leiner, A. Lely, N. van der Kaaij, L. Kappelle, Y. Ruigrok, M. Verhaar, F. Visseren, J. Westerink and F. the UCC-SMART-Studygroup, "Diffuse idiopathic skeletal hyperostosis is associated with incident stroke in patients with increased cardiovascular risk", Rheumatology, 2021;61:2867-2874.
- L. van Eekelen, H. Pinckaers, M. van den Brand, K. Hebeda and G. Litjens, "Using deep learning for quantification of cellularity and cell lineages in bone marrow biopsies and comparison to normal age-related variation.", Pathology, 2021.
- A. van der Eerden, T. van den Heuvel, M. Maas, P. Vart, P. Vos, B. Platel, B. Góraj and R. Manniesing, "The radiological interpretation of possible microbleeds after moderate or severe traumatic brain injury: a longitudinal study", Neuroradiology, 2021;64:1145-1156.
- C. Jacobs, A. Schreuder, S. van Riel, E. Scholten, R. Wittenberg, M. Winkler Wille, B. de Hoop, R. Sprengers, O. Mets, B. Geurts, M. Prokop, C. Schaefer-Prokop and B. van Ginneken, "Assisted versus Manual Interpretation of Low-Dose CT Scans for Lung Cancer Screening: Impact on Lung-RADS Agreement", Radiology: Imaging Cancer, 2021;3(5):e200160.
- M. Dekker, F. Waissi, M. Silvis, J. Bennekom, A. Schoneveld, R. de Winter, I. Isgum, N. Lessmann, B. Velthuis, G. Pasterkamp, A. Mosterd, L. Timmers and D. de Kleijn, "High Levels of Osteoprotegerin Are Associated with Coronary Artery Calcification in Patients Suspected of a Chronic Coronary Syndrome", Scientific Reports, 2021;11(1):18946.
- M. Golatta, A. Pfob, C. Büsch, T. Bruckner, Z. Alwafai, C. Balleyguier, D. Clevert, V. Duda, M. Goncalo, I. Gruber, M. Hahn, P. Kapetas, R. Ohlinger, M. Rutten, M. Tozaki, S. Wojcinski, G. Rauch, J. Heil and R. Barr, "The Potential of Shear Wave Elastography to Reduce Unnecessary Biopsies in Breast Cancer Diagnosis: An International, Diagnostic, Multicenter Trial", Ultraschall in der Medizin - European Journal of Ultrasound, 2021;44:162-168.
- J. Rutgers, T. Bánki, A. van der Kamp, T. Waterlander, M. Scheijde-Vermeulen, M. van den Heuvel-Eibrink, J. van der Laak, M. Fiocco, A. Mavinkurve-Groothuis and R. de Krijger, "Interobserver variability between experienced and inexperienced observers in the histopathological analysis of Wilms tumors: a pilot study for future algorithmic approach", Diagnostic Pathology, 2021;16.
- K. Kartasalo, W. Bulten, B. Delahunt, P. Chen, H. Pinckaers, H. Olsson, X. Ji, N. Mulliqi, H. Samaratunga, T. Tsuzuki, J. Lindberg, M. Rantalainen, C. Wahlby, G. Litjens, P. Ruusuvuori, L. Egevad and M. Eklund, "Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer in Biopsies-Current Status and Next Steps.", European Urology Focus, 2021;7(4):687-691.
- S. Youn, M. Choi, D. Kim, Y. Lee, H. Huisman, E. Johnson, T. Penzkofer, I. Shabunin, D. Winkel, P. Xing, D. Szolar, R. Grimm, H. von Busch, Y. Son, B. Lou and A. Kamen, "Detection and PI-RADS classification of focal lesions in prostate MRI: Performance comparison between a deep learning-based algorithm (DLA) and radiologists with various levels of experience", European Journal of Radiology, 2021;142:109894.
- L. Kerschke, S. Weigel, A. Rodriguez-Ruiz, N. Karssemeijer and W. Heindel, "Using deep learning to assist readers during the arbitration process: a lesion-based retrospective evaluation of breast cancer screening performance", European Radiology, 2021;32:842-852.
- A. Turan, S. Jenniskens, J. Martens, M. Rutten, L. Yo, M. van Strijen, J. Drenth, P. Siersema and E. van Geenen, "Complications of percutaneous transhepatic cholangiography and biliary drainage, a multicenter observational study", Abdominal Radiology, 2021;47:3338-3344.
- N. Harlianto, J. Westerink, W. Foppen, M. Hol, R. Wittenberg, P. van der Veen, B. van Ginneken, J. Kuperus, J. Verlaan, P. de Jong, F. Mohamed Hoesein and O. behalf of the Group, "Visceral Adipose Tissue and Different Measures of Adiposity in Different Severities of Diffuse Idiopathic Skeletal Hyperostosis", Journal of Personalized Medicine, 2021;11:663.
- G. Bortsova, C. González-Gonzalo, S. Wetstein, F. Dubost, I. Katramados, L. Hogeweg, B. Liefers, B. van Ginneken, J. Pluim, M. Veta, C. Sánchez and M. de Bruijne, "Adversarial Attack Vulnerability of Medical Image Analysis Systems: Unexplored Factors", Medical Image Analysis, 2021:102141.
- J. Slaats, C. Dieteren, E. Wagena, L. Wolf, T. Raaijmakers, J. van der Laak, C. Figdor, B. Weigelin and P. Friedl, "Metabolic Screening of Cytotoxic T-cell Effector Function Reveals the Role of CRAC Channels in Regulating Lethal Hit Delivery", Cancer Immunology Research, 2021;9:926-938.
- A. Schreuder, M. Prokop, E. Scholten, O. Mets, K. Chung, F. Mohamed Hoesein, C. Jacobs and C. Schaefer-Prokop, "CT-Detected Subsolid Nodules: A Predictor of Lung Cancer Development at Another Location?", Cancers, 2021;13(11):2812.
- E. Calli, E. Sogancioglu, B. van Ginneken, K. van Leeuwen and K. Murphy, "Deep learning for chest X-ray analysis: A survey", Medical Image Analysis, 2021;72:102125.
- A. Schreuder, E. Scholten, B. van Ginneken and C. Jacobs, "Artificial intelligence for detection and characterization of pulmonary nodules in lung cancer CT screening: ready for practice?", Translational Lung Cancer Research, 2021;10(5):2378-2388.
- A. Snoeckx, C. Franck, M. Silva, M. Prokop, C. Schaefer-Prokop and M. Revel, "The radiologist's role in lung cancer screening", Translational Lung Cancer Research, 2021;10:2356-2367.
- E. Munari, M. Marconi, G. Querzoli, G. Lunardi, P. Bertoglio, F. Ciompi, A. Tosadori, A. Eccher, N. Tumino, L. Quatrini, P. Vacca, G. Rossi, A. Cavazza, G. Martignoni, M. Brunelli, G. Netto, L. Moretta, G. Zamboni and G. Bogina, "Impact of PD-L1 and PD-1 Expression on the Prognostic Significance of CD8+, Tumor-Infiltrating Lymphocytes in Non-Small Cell Lung Cancer.", Frontiers in immunology, 2021;12:680973.
- J. Twilt, K. van Leeuwen, H. Huisman, J. Fütterer and M. de Rooij, "Artificial Intelligence Based Algorithms for Prostate Cancer Classification and Detection on Magnetic Resonance Imaging: A Narrative Review", Diagnostics, 2021;11:959.
- E. Munari, F. Mariotti, L. Quatrini, P. Bertoglio, N. Tumino, P. Vacca, A. Eccher, F. Ciompi, M. Brunelli, G. Martignoni, G. Bogina and L. Moretta, "PD-1/PD-L1 in Cancer: Pathophysiological, Diagnostic and Therapeutic Aspects.", International journal of molecular sciences, 2021;22(10).
- E. van Kempen, M. Post, M. Mannil, R. Witkam, M. ter Laan, A. Patel, F. Meijer and D. Henssen, "Performance of machine learning algorithms for glioma segmentation of brain MRI: a systematic literature review and meta-analysis", European Radiology, 2021;31:9638-9653.
- J. Colijn, B. Liefers, N. Joachim, T. Verzijden, M. Meester-Smoor, M. Biarnés, J. Monés, P. de Jong, J. Vingerling, P. Mitchell, C. Sánchez, J. Wang, C. Klaver, E. Center and E. Consortium, "Enlargement of Geographic Atrophy From First Diagnosis to End of Life", JAMA Ophthalmology, 2021;139:743.
- M. Hermsen, V. Volk, J. Brasen, D. Geijs, W. Gwinner, J. Kers, J. Linmans, N. Schaadt, J. Schmitz, E. Steenbergen, Z. Swiderska-Chadaj, B. Smeets, L. Hilbrands and J. van der Laak, "Quantitative assessment of inflammatory infiltrates in kidney transplant biopsies using multiplex tyramide signal amplification and deep learning", Laboratory Investigation, 2021;101(8):970-982.
- K. Venkadesh, A. Setio, A. Schreuder, E. Scholten, K. Chung, M. W Wille, Z. Saghir, B. van Ginneken, M. Prokop and C. Jacobs, "Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT.", Radiology, 2021;300(2):438-447.
- T. Penzkofer, A. Padhani, B. Turkbey, M. Haider, H. Huisman, J. Walz, G. Salomon, I. Schoots, J. Richenberg, G. Villeirs, V. Panebianco, O. Rouviere, V. Logager and J. Barentsz, "ESUR/ESUI position paper: developing artificial intelligence for precision diagnosis of prostate cancer using magnetic resonance imaging.", European Radiology, 2021.
- J. van der Laak, G. Litjens and F. Ciompi, "Deep learning in histopathology: the path to the clinic.", Nature Medicine, 2021;27(5):775-784.
- B. de Vos, N. Lessmann, P. de Jong and I. Isgum, "Deep Learning-Quantified Calcium Scores for Automatic Cardiovascular Mortality Prediction at Lung Screening Low-Dose CT", Radiology: Cardiothoracic Imaging, 2021;3(2):e190219.
- R. Gal, S. van Velzen, M. Hooning, M. Emaus, F. van der Leij, M. Gregorowitsch, E. Blezer, S. Gernaat, N. Lessmann, M. Sattler, T. Leiner, P. de Jong, A. Teske, J. Verloop, J. Penninkhof, I. Vaartjes, H. Meijer, J. van Tol-Geerdink, J. Pignol, D. van den Bongard, I. Isgum and H. Verkooijen, "Identification of Risk of Cardiovascular Disease by Automatic Quantification of Coronary Artery Calcifications on Radiotherapy Planning CT Scans in Patients With Breast Cancer", JAMA Oncology, 2021;7(7):1024-1032.
- S. van Winkel, A. Rodríguez-Ruiz, L. Appelman, A. Gubern-Mérida, N. Karssemeijer, J. Teuwen, A. Wanders, I. Sechopoulos and R. Mann, "Impact of artificial intelligence support on accuracy and reading time in breast tomosynthesis image interpretation: a multi-reader multi-case study", European Radiology, 2021;31:8682-8691.
- A. Afshar-Oromieh, H. Prosch, C. Schaefer-Prokop, K. Bohn, I. Alberts, C. Mingels, M. Thurnher, P. Cumming, K. Shi, A. Peters, S. Geleff, X. Lan, F. Wang, A. Huber, C. Gräni, J. Heverhagen, A. Rominger, M. Fontanellaz, H. Schöder, A. Christe, S. Mougiakakou and L. Ebner, "A comprehensive review of imaging findings in COVID-19 - status in early 2021", European Journal of Nuclear Medicine and Molecular Imaging, 2021;48:2500-2524.
- J. Teuwen, N. Moriakov, C. Fedon, M. Caballo, I. Reiser, P. Bakic, E. García, O. Diaz, K. Michielsen and I. Sechopoulos, "Deep learning reconstruction of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose estimation", Medical Image Analysis, 2021;71:102061.
- A. Schreuder, O. Mets, C. Schaefer-Prokop, C. Jacobs and M. Prokop, "Microsimulation modeling of extended annual CT screening among lung cancer cases in the National Lung Screening Trial", Lung Cancer, 2021;156:5-11.
- K. van Leeuwen, S. Schalekamp, M. Rutten, B. van Ginneken and M. de Rooij, "Artificial intelligence in radiology: 100 commercially available products and their scientific evidence", European Radiology, 2021;31:3797-3804.
- M. Caballo, A. Hernandez, S. Lyu, J. Teuwen, R. Mann, B. van Ginneken, J. Boone and I. Sechopoulos, "Computer-aided diagnosis of masses in breast computed tomography imaging: deep learning model with combined handcrafted and convolutional radiomic features", Journal of Medical Imaging, 2021;8.
- A. Schreuder and C. Schaefer-Prokop, "Beyond the AJR: "Association of the Intensity of Diagnostic Evaluation With Outcomes in Incidentally Detected Lung Nodules"", American Journal of Roentgenology, 2021;217:1011-1011.
- F. Faita, T. Oranges, N. Di Lascio, F. Ciompi, S. Vitali, G. Aringhieri, A. Janowska, M. Romanelli and V. Dini, "Ultra-high-frequency ultrasound and machine learning approaches for the differential diagnosis of melanocytic lesions.", Experimental Dermatology, 2021.
- H. Pinckaers, W. Bulten, J. der Van Laak and G. Litjens, "Detection of prostate cancer in whole-slide images through end-to-end training with image-level labels.", IEEE Transactions on Medical Imaging, 2021.
- S. Scharm, J. Vogel-Claussen, C. Schaefer-Prokop, S. Dettmer, L. Knudsen, D. Jonigk, J. Fuge, R. Apel, T. Welte, F. Wacker, A. Prasse and H. Shin, "Quantification of dual-energy CT-derived functional parameters as potential imaging markers for progression of idiopathic pulmonary fibrosis", European Radiology, 2021;31:6640-6651.
- S. Veenhuizen, S. de Lange, M. Bakker, R. Pijnappel, R. Mann, E. Monninkhof, M. Emaus, P. de Koekkoek-Doll, R. Bisschops, M. Lobbes, M. de Jong, K. Duvivier, J. Veltman, N. Karssemeijer, H. de Koning, P. van Diest, W. Mali, M. van den Bosch, C. van Gils, W. Veldhuis, C. van Gils, M. Bakker, S. de Lange, S. Veenhuizen, W. Veldhuis, R. Pijnappel, M. Emaus, P. Peeters, E. Monninkhof, M. Fernandez-Gallardo, W. Mali, M. van den Bosch, P. van Diest, R. Mann, R. Mus, M. Imhof-Tas, N. Karssemeijer, C. Loo, P. de Koekkoek-Doll, H. Winter-Warnars, R. Bisschops, M. Kock, R. Storm, P. van der Valk, M. Lobbes, S. Gommers, M. Lobbes, M. de Jong, M. Rutten, K. Duvivier, P. de Graaf, J. Veltman, R. Bourez, H. de Koning and F. the Group, "Supplemental Breast MRI for Women with Extremely Dense Breasts: Results of the Second Screening Round of the DENSE Trial", Radiology, 2021;299:278-286.
- W. Sanderink, J. Teuwen, L. Appelman, L. Moy, L. Heacock, E. Weiland, N. Karssemeijer, P. Baltzer, I. Sechopoulos and R. Mann, "Comparison of simultaneous multi-slice single-shot DWI to readout-segmented DWI for evaluation of breast lesions at 3T MRI", European Journal of Radiology, 2021;138:109626.
- M. Velema, L. Canu, T. Dekkers, A. Hermus, H. Timmers, L. Schultze Kool, H. Groenewoud, C. Jacobs, J. Deinum and S. Investigators, "Volumetric evaluation of CT images of adrenal glands in primary aldosteronism.", Journal of endocrinological investigation, 2021;44(11):2359-2366.
- T. Haddad, A. Lugli, S. Aherne, V. Barresi, B. Terris, J. Bokhorst, S. Brockmoeller, M. Cuatrecasas, F. Simmer, H. El-Zimaity, J. Fléjou, D. Gibbons, G. Cathomas, R. Kirsch, T. Kuhlmann, C. Langner, M. Loughrey, R. Riddell, A. Ristimäki, S. Kakar, K. Sheahan, D. Treanor, J. van der Laak, M. Vieth, I. Zlobec and I. Nagtegaal, "Improving tumor budding reporting in colorectal cancer: a Delphi consensus study", Virchows Archiv, 2021;479:459-469.
- T. de Bel, J. Bokhorst, J. van der Laak and G. Litjens, "Residual cyclegan for robust domain transformation of histopathological tissue slides.", Medical Image Analysis, 2021;70:102004.
- M. Balkenhol, F. Ciompi, Z. Swiderska-Chadaj, R. van de Loo, M. Intezar, I. Otte-Holler, D. Geijs, J. Lotz, N. Weiss, T. de Bel, G. Litjens, P. Bult and J. van der Laak, "Optimized tumour infiltrating lymphocyte assessment for triple negative breast cancer prognostics.", The Breast, 2021;56:78-87.
- A. van der Eerden, T. van den Heuvel, V. Perlbarg, P. Vart, P. Vos, L. Puybasset, D. Galanaud, B. Platel, R. Manniesing and B. Goraj, "Traumatic Cerebral Microbleeds in the Subacute Phase Are Practical and Early Predictors of Abnormality of the Normal-Appearing White Matter in the Chronic Phase", American Journal of Neuroradiology, 2021;42:861-867.
- C. Pistenmaa, P. Nardelli, S. Ash, C. Come, A. Diaz, F. Rahaghi, R. Barr, K. Young, G. Kinney, J. Simmons, R. Wade, J. Wells, J. Hokanson, G. Washko, R. José San Estépar, J. Crapo, E. Silverman, B. Make, E. Regan, T. Beaty, P. Castaldi, M. Cho, D. DeMeo, A. El Boueiz, M. Foreman, A. Ghosh, L. Hayden, C. Hersh, J. Hetmanski, B. Hobbs, J. Hokanson, W. Kim, N. Laird, C. Lange, S. Lutz, M. McDonald, D. Prokopenko, M. Moll, J. Morrow, D. Qiao, E. Regan, A. Saferali, P. Sakornsakolpat, E. Silverman, E. Wan, J. Yun, J. Centeno, J. Charbonnier, H. Coxson, C. Galban, M. Han, E. Hoffman, S. Humphries, F. Jacobson, P. Judy, E. Kazerooni, A. Kluiber, D. Lynch, P. Nardelli, J. Newell, A. Notary, A. Oh, E. Regan, J. Ross, R. Jose San Estepar, J. Schroeder, J. Sieren, B. Stoel, J. Tschirren, E. Van Beek, B. Ginneken, E. van Rikxoort, G. Sanchez- Ferrero, L. Veitel, G. Washko, C. Wilson, R. Jensen, D. Everett, J. Crooks, K. Pratte, M. Strand, C. Wilson, J. Hokanson, E. Austin, G. Kinney, S. Lutz, K. Young, S. Bhatt, J. Bon, A. Diaz, M. Han, B. Make, S. Murray, E. Regan, X. Soler, C. Wilson, R. Bowler, K. Kechris, F. Banaei-Kashani, J. Curtis, P. Pernicano, N. Hanania, M. Atik, A. Boriek, K. Guntupalli, E. Guy, A. Parulekar, D. DeMeo, C. Hersh, F. Jacobson, G. Washko, R. Barr, J. Austin, B. D'Souza, B. Thomashow, N. MacIntyre, H. McAdams, L. Washington, C. McEvoy, J. Tashjian, R. Wise, R. Brown, N. Hansel, K. Horton, A. Lambert, N. Putcha, R. Casaburi, A. Adami, M. Budoff, H. Fischer, J. Porszasz, H. Rossiter, W. Stringer, A. Sharafkhaneh, C. Lan, C. Wendt, B. Bell, K. Kunisaki, E. Flenaugh, H. Gebrekristos, M. Ponce, S. Terpenning, G. Westney, R. Bowler, D. Lynch, R. Rosiello, D. Pace, G. Criner, D. Ciccolella, F. Cordova, C. Dass, G. D'Alonzo, P. Desai, M. Jacobs, S. Kelsen, V. Kim, A. Mamary, N. Marchetti, A. Satti, K. Shenoy, R. Steiner, A. Swift, I. Swift, M. Vega-Sanchez, M. Dransfield, W. Bailey, S. Bhatt, A. Iyer, H. Nath, J. Wells, D. Conrad, X. Soler, A. Yen, A. Comellas, K. Hoth, J. Newell, B. Thompson, M. Han, E. Kazerooni, W. Labaki, C. Galban, D. Vummidi, J. Billings, A. Begnaud, T. Allen, F. Sciurba, J. Bon, D. Chandra and J. Weissfeld, "Pulmonary Arterial Pruning and Longitudinal Change in Percent Emphysema and Lung Function", Chest, 2021;160:470-480.
- O. Turner, B. Knight, A. Zuraw, G. Litjens and D. Rudmann, "Mini Review: The Last Mile-Opportunities and Challenges for Machine Learning in Digital Toxicologic Pathology.", Toxicologic Pathology, 2021;49(4):714-719.
- A. Schreuder, C. Jacobs, N. Lessmann, M. Broeders, M. Silva, I. Isgum, P. de Jong, N. Sverzellati, M. Prokop, U. Pastorino, C. Schaefer-Prokop and B. van Ginneken, "Combining pulmonary and cardiac computed tomography biomarkers for disease-specific risk modelling in lung cancer screening", European Respiratory Journal, 2021;58(3):2003386.
- L. Fournier, L. Costaridou, L. Bidaut, N. Michoux, F. Lecouvet, L. de Geus-Oei, R. Boellaard, D. Oprea-Lager, N. Obuchowski, A. Caroli, W. Kunz, E. Oei, J. O'Connor, M. Mayerhoefer, M. Franca, A. Alberich-Bayarri, C. Deroose, C. Loewe, R. Manniesing, C. Caramella, E. Lopci, N. Lassau, A. Persson, R. Achten, K. Rosendahl, O. Clement, E. Kotter, X. Golay, M. Smits, M. Dewey, D. Sullivan, A. van der Lugt, N. deSouza and E. of Radiology, "Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers", European Radiology, 2021;31:6001-6012.
- T. Johkoh, K. Lee, M. Nishino, W. Travis, J. Ryu, H. Lee, C. Ryerson, T. Franquet, A. Bankier, K. Brown, J. Goo, H. Kauczor, D. Lynch, A. Nicholson, L. Richeldi, C. Schaefer-Prokop, J. Verschakelen, S. Raoof, G. Rubin, C. Powell, Y. Inoue and H. Hatabu, "Chest CT Diagnosis and Clinical Management of Drug-Related Pneumonitis in Patients Receiving Molecular Targeting Agents and Immune Checkpoint Inhibitors", Chest, 2021;159:1107-1125.
- T. Johkoh, K. Lee, M. Nishino, W. Travis, J. Ryu, H. Lee, C. Ryerson, T. Franquet, A. Bankier, K. Brown, J. Goo, H. Kauczor, D. Lynch, A. Nicholson, L. Richeldi, C. Schaefer-Prokop, J. Verschakelen, S. Raoof, G. Rubin, C. Powell, Y. Inoue and H. Hatabu, "Chest CT Diagnosis and Clinical Management of Drug-related Pneumonitis in Patients Receiving Molecular Targeting Agents and Immune Checkpoint Inhibitors: A Position Paper from the Fleischner Society", Radiology, 2021;298:550-566.
- B. Liefers, P. Taylor, A. Alsaedi, C. Bailey, K. Balaskas, N. Dhingra, C. Egan, F. Rodrigues, C. González-Gonzalo, T. Heeren, A. Lotery, P. Muller, A. Olvera-Barrios, B. Paul, R. Schwartz, D. Thomas, A. Warwick, A. Tufail and C. Sánchez, "Quantification of key retinal features in early and late age-related macular degeneration using deep learning", American Journal of Ophthalmology, 2021;226:1-12.
- D. Grob, L. Oostveen, C. Jacobs, E. Scholten, M. Prokop, C. Schaefer-Prokop, I. Sechopoulos and M. Brink, "Pulmonary nodule enhancement in subtraction CT and dual-energy CT: A comparison study", European Journal of Radiology, 2021;134:109443.
- C. Schaefer-Prokop and M. Prokop, "Chest Radiography in COVID-19: No Role in Asymptomatic and Oligosymptomatic Disease", Radiology, 2021;298:E156-E157.
- M. van Rijthoven, M. Balkenhol, K. Silina, J. van der Laak and F. Ciompi, "HookNet: Multi-resolution convolutional neural networks for semantic segmentation in histopathology whole-slide images", Medical Image Analysis, 2021;68:101890.
- Z. Li, J. Zhang, T. Tan, X. Teng, X. Sun, H. Zhao, L. Liu, Y. Xiao, B. Lee, Y. Li, Q. Zhang, S. Sun, Y. Zheng, J. Yan, N. Li, Y. Hong, J. Ko, H. Jung, Y. Liu, Y. Chen, C. Wang, V. Yurovskiy, P. Maevskikh, V. Khanagha, Y. Jiang, L. Yu, Z. Liu, D. Li, P. Schuffler, Q. Yu, H. Chen, Y. Tang and G. Litjens, "Deep Learning Methods for Lung Cancer Segmentation in Whole-Slide Histopathology Images--The ACDC@LungHP Challenge 2019", IEEE Journal of Biomedical and Health Informatics, 2021;25:429-440.
- J. Bartstra, F. Draaisma, S. Zwakenberg, N. Lessmann, J. Wolterink, Y. van der Schouw, P. de Jong and J. Beulens, "Six months vitamin K treatment does not affect systemic arterial calcification or bone mineral density in diabetes mellitus 2", European Journal of Nutrition, 2021;60:1691-1699.
- N. Lessmann, C. Sánchez, L. Beenen, L. Boulogne, M. Brink, E. Calli, J. Charbonnier, T. Dofferhoff, W. van Everdingen, P. Gerke, B. Geurts, H. Gietema, M. Groeneveld, L. van Harten, N. Hendrix, W. Hendrix, H. Huisman, I. Isgum, C. Jacobs, R. Kluge, M. Kok, J. Krdzalic, B. Lassen-Schmidt, K. van Leeuwen, J. Meakin, M. Overkamp, T. van Rees Vellinga, E. van Rikxoort, R. Samperna, C. Schaefer-Prokop, S. Schalekamp, E. Scholten, C. Sital, L. Stöger, J. Teuwen, K. Vaidhya Venkadesh, C. de Vente, M. Vermaat, W. Xie, B. de Wilde, M. Prokop and B. van Ginneken, "Automated Assessment of COVID-19 Reporting and Data System and Chest CT Severity Scores in Patients Suspected of Having COVID-19 Using Artificial Intelligence", Radiology, 2021;298(1):E18-E28.
- D. Tellez, G. Litjens, J. van der Laak and F. Ciompi, "Neural Image Compression for Gigapixel Histopathology Image Analysis.", IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021;43(2):567-578.
- T. Perik, E. van Genugten, E. Aarntzen, E. Smit, H. Huisman and J. Hermans, "Quantitative CT perfusion imaging in patients with pancreatic cancer: a systematic review", Abdominal Radiology, 2021.
- J. Bogaerts, M. Steenbeek, M. van Bommel, J. Bulten, J. van der Laak, J. de Hullu and M. Simons, "Recommendations for diagnosing STIC: a systematic review and meta-analysis", 2021;480(4):725-737.
- N. Hendrix, E. Scholten, B. Vernhout, S. Bruijnen, B. Maresch, M. de Jong, S. Diepstraten, S. Bollen, S. Schalekamp, M. de Rooij, A. Scholtens, W. Hendrix, T. Samson, L. Sharon Ong, E. Postma, B. van Ginneken and M. Rutten, "Development and Validation of a Convolutional Neural Network for Automated Detection of Scaphoid Fractures on Conventional Radiographs", Radiology: Artificial Intelligence, 2021:e200260.
- F. Michallek, H. Huisman, B. Hamm, S. Elezkurtaj, A. Maxeiner and M. Dewey, "Accuracy of fractal analysis and PI-RADS assessment of prostate magnetic resonance imaging for prediction of cancer grade groups: a clinical validation study", European Radiology, 2021.
- F. Ciompi, M. Veta, J. van der Laak and N. Rajpoot, "Editorial Computational Pathology", IEEE} Journal of Biomedical and Health Informatics, 2021;25(2):303-306.
- A. Hering, S. Hager, J. Moltz, N. Lessmann, S. Heldmann and B. van Ginneken, "CNN-based Lung CT Registration with Multiple Anatomical Constraints", Medical Image Analysis, 2021;72:102139.
- E. Calli, K. Murphy, S. Kurstjens, T. Samson, R. Herpers, H. Smits, M. Rutten and B. van Ginneken, "Deep learning with robustness to missing data: A novel approach to the detection of COVID-19", PLoS One, 2021;16(7):e0255301.
- A. Saha, M. Hosseinzadeh and H. Huisman, "End-to-end Prostate Cancer Detection in bpMRI via 3D CNNs: Effects of Attention Mechanisms, Clinical Priori and Decoupled False Positive Reduction", Medical Image Analysis, 2021:102155.
- D. Winkel, A. Tong, B. Lou, A. Kamen, D. Comaniciu, J. Disselhorst, A. Rodr\'ıguez-Ruiz, H. Huisman, D. Szolar, I. Shabunin, M. Choi, P. Xing, T. Penzkofer, R. Grimm, H. von Busch and D. Boll, "A Novel Deep Learning Based Computer-Aided Diagnosis System Improves the Accuracy and Efficiency of Radiologists in Reading Biparametric Magnetic Resonance Images of the Prostate", Investigative Radiology, 2021;Publish Ahead of Print.
- F. Michallek, H. Huisman, B. Hamm, S. Elezkurtaj, A. Maxeiner and M. Dewey, "Prediction of prostate cancer grade using fractal analysis of perfusion MRI: retrospective proof-of-principle study", European Radiology, 2021.
- K. van Leeuwen, F. Meijer, S. Schalekamp, M. Rutten, E. van Dijk, B. van Ginneken, T. Govers and M. Rooij, "Cost - effectiveness of artificial intelligence aided vessel occlusion detection in acute stroke: an early health technology assessment", Insights into Imaging, 2021;12:133.
- N. Marini, S. Otálora, D. Podareanu, M. van Rijthoven, J. van der Laak, F. Ciompi, H. Muller and M. Atzori, "Multi_Scale_Tools: A Python Library to Exploit Multi-Scale Whole Slide Images", Frontiers in Computer Science, 2021;3.
- J. Bleker, D. Yakar, B. van Noort, D. Rouw, I. de Jong, R. Dierckx, T. Kwee and H. Huisman, "Single-center versus multi-center biparametric MRI radiomics approach for clinically significant peripheral zone prostate cancer", Insights into Imaging, 2021;12(1).
- A. Sekuboyina, M. Husseini, A. Bayat, M. Loffler, H. Liebl, H. Li, G. Tetteh, J. Kukacka, C. Payer, D. Stern, M. Urschler, M. Chen, D. Cheng, N. Lessmann, Y. Hu, T. Wang, D. Yang, D. Xu, F. Ambellan, T. Amiranashvili, M. Ehlke, H. Lamecker, S. Lehnert, M. Lirio, N. de Olaguer, H. Ramm, M. Sahu, A. Tack, S. Zachow, T. Jiang, X. Ma, C. Angerman, X. Wang, K. Brown, A. Kirszenberg, E. Puybareau, D. Chen, Y. Bai, B. Rapazzo, T. Yeah, A. Zhang, S. Xu, F. Hou, Z. He, C. Zeng, Z. Xiangshang, X. Liming, T. Netherton, R. Mumme, L. Court, Z. Huang, C. He, L. Wang, S. Ling, L. Huynh, N. Boutry, R. Jakubicek, J. Chmelik, S. Mulay, M. Sivaprakasam, J. Paetzold, S. Shit, I. Ezhov, B. Wiestler, B. Glocker, A. Valentinitsch, M. Rempfler, B. Menze and J. Kirschke, "VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images", Medical Image Analysis, 2021;73:102166.
- M. Hosseinzadeh, A. Saha, P. Brand, I. Slootweg, M. de Rooij and H. Huisman, "Deep learning-assisted prostate cancer detection on bi-parametric MRI: minimum training data size requirements and effect of prior knowledge", European Radiology, 2021.
- G. Humpire Mamani, J. Bukala, E. Scholten, M. Prokop, B. van Ginneken and C. Jacobs, "Fully Automatic Volume Measurement of the Spleen at CT Using Deep Learning", Radiology: Artificial Intelligence, 2020;2(4):e190102.
- A. Schreuder, C. Jacobs, E. Scholten, B. van Ginneken, C. Schaefer-Prokop and M. Prokop, "Typical CT Features of Intrapulmonary Lymph Nodes: A Review", Radiology: Cardiothoracic Imaging, 2020;2(4):e190159.
- P. den Exter, L. Kroft, C. Gonsalves, G. Le Gal, C. Schaefer-Prokop, M. Carrier, M. Huisman and F. Klok, "Establishing diagnostic criteria and treatment of subsegmental pulmonary embolism: A Delphi analysis of experts", Research and Practice in Thrombosis and Haemostasis, 2020;4:1251-1261.
- A. Rossi, M. Hosseinzadeh, M. Bianchini, F. Scarselli and H. Huisman, "Multi-modal siamese network for diagnostically similar lesion retrieval in prostate MRI", IEEE Transactions on Medical Imaging, 2020.
- B. van Ginneken, "The Potential of Artificial Intelligence to Analyze Chest Radiographs for Signs of COVID-19 Pneumonia", Radiology, 2020:204238.
- A. Meyer, G. Chlebus, M. Rak, D. Schindele, M. Schostak, B. van Ginneken, A. Schenk, H. Meine, H. Hahn, A. Schreiber and C. Hansen, "Anisotropic 3D Multi-Stream CNN for Accurate Prostate Segmentation from Multi-Planar MRI", Computer Methods and Programs in Biomedicine, 2020:105821.
- M. Silva, G. Milanese, S. Sestini, F. Sabia, C. Jacobs, B. van Ginneken, M. Prokop, C. Schaefer-Prokop, A. Marchiano, N. Sverzellati and U. Pastorino, "Lung cancer screening by nodule volume in Lung-RADS v1.1: negative baseline CT yields potential for increased screening interval", European Radiology, 2020;31(4):1956-1968.
- M. Hermsen, B. Smeets, L. Hilbrands and J. van der Laak, "Artificial intelligence; is there a potential role in nephropathology?", Nephrology Dialysis Transplantation, 2020.
- T. Hebar, Z. Snoj, L. Sconfienza, F. Vanhoenacker, M. Shahabpour, V. Salapura, A. Isaac, E. Drakonaki, Y. Vasilev, J. Drape, M. Adriaensen, K. Friedrich, G. Guglielmi, A. Vieira, H. Sanal, L. Kerttula, J. Hellund, J. Nagy, A. Heuck, M. Rutten, M. Tzalonikou, U. Hansen, J. Niemunis-Sawicka, F. Becce, E. Silvestri, E. Juan and K. Wörtler, "Present Status of Musculoskeletal Radiology in Europe: International Survey by the European Society of Musculoskeletal Radiology", Seminars in Musculoskeletal Radiology, 2020;24:323-330.
- Z. Swiderska-Chadaj, K. Hebeda, M. van den Brand and G. Litjens, "Artificial intelligence to detect MYC translocation in slides of diffuse large B-cell lymphoma", Virchows Archiv, 2020.
- M. Meijs, F. Meijer, M. Prokop, B. van Ginneken and R. Manniesing, "Image-level detection of arterial occlusions in 4D-CTA of acute stroke patients using deep learning", Medical Image Analysis, 2020;66:101810.
- L. Maier-Hein, A. Reinke, M. Kozubek, A. L. Martel, T. Arbel, M. Eisenmann, A. Hanbuary, P. Jannin, H. Muller, S. Onogur, J. Saez-Rodriguez, B. van Ginneken, A. Kopp-Schneider and B. Landman, "BIAS: Transparent reporting of biomedical image analysis challenges", Medical Image Analysis, 2020;66:101796.
- T. Kootstra, J. Teuwen, J. Goudsmit, T. Nijboer, M. Dodd and S. Van der Stigchel, "Machine learning-based classification of viewing behavior using a wide range of statistical oculomotor features", Journal of Vision, 2020;20(9):1.
- Z. Swiderska-Chadaj, T. de Bel, L. Blanchet, A. Baidoshvili, D. Vossen, J. van der Laak and G. Litjens, "Impact of rescanning and normalization on convolutional neural network performance in multi-center, whole-slide classification of prostate cancer", Scientific Reports, 2020;10(1):14398.
- H. Pinckaers, B. van Ginneken and G. Litjens, "Streaming convolutional neural networks for end-to-end learning with multi-megapixel images", IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.
- S. Schalekamp, M. Huisman, R. van Dijk, M. Boomsma, P. Freire Jorge, W. de Boer, G. Herder, M. Bonarius, O. Groot, E. Jong, A. Schreuder and C. Schaefer-Prokop, "Model-based Prediction of Critical Illness in Hospitalized Patients with COVID-19", Radiology, 2020:202723.
- W. Bulten, M. Balkenhol, J. Belinga, A. Brilhante, A. Çakır, L. Egevad, M. Eklund, X. Farré, K. Geronatsiou, V. Molinié, G. Pereira, P. Roy, G. Saile, P. Salles, E. Schaafsma, J. Tschui, A. Vos, B. Delahunt, H. Samaratunga, D. Grignon, A. Evans, D. Berney, C. Pan, G. Kristiansen, J. Kench, J. Oxley, K. Leite, J. McKenney, P. Humphrey, S. Fine, T. Tsuzuki, M. Varma, M. Zhou, E. Comperat, D. Bostwick, K. Iczkowski, C. Magi-Galluzzi, J. Srigley, H. Takahashi, T. van der Kwast, H. van Boven, R. Vink, J. van der Laak, C. der Hulsbergen-van Kaa and G. Litjens, "Artificial Intelligence Assistance Significantly Improves Gleason Grading of Prostate Biopsies by Pathologists", Modern Pathology, 2020.
- C. González-Gonzalo, B. Liefers, B. van Ginneken and C. Sánchez, "Iterative augmentation of visual evidence for weakly-supervised lesion localization in deep interpretability frameworks: application to color fundus images", IEEE Transactions on Medical Imaging, 2020;39(11):3499-3511.
- W. Sanderink, L. Strobbe, P. Bult, M. Schlooz-Vries, S. Lardenoije, D. Venderink, I. Sechopoulos, N. Karssemeijer, W. Vreuls and R. Mann, "Minimally invasive breast cancer excision using the breast lesion excision system under ultrasound guidance", Breast Cancer Research and Treatment, 2020;184:37-43.
- W. Xie, C. Jacobs, J. Charbonnier and B. van Ginneken, "Relational Modeling for Robust and Efficient Pulmonary Lobe Segmentation in CT Scans", IEEE Transactions on Medical Imaging, 2020;39(8):2664-2675.
- A. Schreuder, C. Jacobs, E. Scholten, M. Prokop, B. van Ginneken, D. Lynch and C. Schaefer-Prokop, "Association between the number and size of intrapulmonary lymph nodes and chronic obstructive pulmonary disease severity", PeerJ, 2020;8:e9166.
- J. Terheyden, F. Holz, S. Schmitz-Valckenberg, A. Lüning, M. Schmid, G. Rubin, H. Dunbar, A. Tufail, D. Crabb, A. Binns, C. Sánchez, C. Hoyng, P. Margaron, N. Zakaria, M. Durbin, U. Luhmann, P. Zamiri, J. Cunha-Vaz, C. Martinho, S. Leal, R. Finger, P. Basile, C. Behning, M. Berger, A. Binns, M. Böttger, C. Bouchet, J. Brazier, T. Butt, C. Carapezzi, J. Carlton, A. Charil, R. Coimbra, S. Nunes, D. Crabb, J. Cunha-Vaz, H. Dunbar, M. Durbin, R. Finger, F. Holz, C. Hoyng, J. Krätzschmar, S. Leal, U. Luhmann, A. Lüning, P. Margaron, C. Martinho, B. Melício, S. Mohand-Saïd, D. Rowen, G. Rubin, J. Sahel, C. Sánchez, D. Sanches Fernandes, M. Schmid, S. Schmitz-Valckenberg, A. Skelly, L. Stöhr, D. Taylor, J. Terheyden, A. Tufail, L. Vieweg, L. Wintergerst, C. Wojek, N. Zakaria, P. Zamiri and O. behalf of the consortium, "Clinical study protocol for a low-interventional study in intermediate age-related macular degeneration developing novel clinical endpoints for interventional clinical trials with a regulatory and patient access intention--MACUSTAR", Trials, 2020;21.
- W. Sanderink, M. Caballo, L. Strobbe, P. Bult, W. Vreuls, D. Venderink, I. Sechopoulos, N. Karssemeijer and R. Mann, "Reliability of MRI tumor size measurements for minimal invasive treatment selection in small breast cancers", European Journal of Surgical Oncology, 2020;46:1463-1470.
- I. Sechopoulos, J. Teuwen and R. Mann, "Artificial Intelligence for Breast Cancer Detection in Mammography: state of the art", Seminars in Cancer Biology, 2020.
- M. Omar, M. Roobol, M. Ribal, T. Abbott, P. Agapow, S. Araujo, A. Asiimwe, C. Auffray, I. Balaur, K. Beyer, C. Bernini, A. Bjartell, A. Briganti, J. Butler-Ransohoff, R. Campi, M. Cavelaars, B. De Meulder, Z. Devecseri, M. Voss, K. Dimitropoulos, S. Evans-Axelsson, B. Franks, L. Fullwood, D. Horgan, E. Smith, A. Kiran, K. Kivinummi, M. Lambrecht, D. Lancet, P. Lindgren, S. MacLennan, S. MacLennan, M. Nogueira, F. Moen, M. Moinat, K. Papineni, C. Reich, K. Reiche, S. Rogiers, C. Sartini, K. van Bochove, F. van Diggelen, M. Van Hemelrijck, H. Van Poppel, J. Zong, J. N'Dow, E. Andersson, H. Arala, A. Auvinen, C. Bangma, D. Burke, A. Cardone, J. Casariego, G. Cuperus, S. Dabestani, F. Esperto, N. Fossati, A. Fridhammar, G. Gandaglia, D. Tandefelt, F. Horn, J. Huber, J. Hugosson, H. Huisman, A. Josefsson, O. Kilkku, M. Kreuz, M. Lardas, J. Lawson, F. Lefresne, S. Lejeune, E. Longden-Chapman, G. McVie, L. Moris, N. Mottet, T. Murtola, C. Nicholls, K. Pang, K. Pascoe, M. Picozzi, K. Plass, P. Pohjanjousi, M. Reaney, S. Remmers, P. Robinson, J. Schalken, M. Schravendeel, T. Seisen, A. Servan, K. Shiranov, R. Snijder, C. Steinbeisser, N. Taibi, K. Talala, D. Tilki, T. den Van Broeck, Z. Vassilev, O. Voima, E. Vradi, R. Waldeck, W. Weistra, P. Willemse, M. Wirth, R. Wolfinger, N. Kermani and T. Consortium, "Introducing PIONEER: a project to harness big data in prostate cancer research", Nature Reviews Urology, 2020;17:351-362.
- G. van Leenders, T. van der Kwast, D. Grignon, A. Evans, G. Kristiansen, C. Kweldam, G. Litjens, J. McKenney, J. Melamed, N. Mottet, G. Paner, H. Samaratunga, I. Schoots, J. Simko, T. Tsuzuki, M. Varma, A. Warren, T. Wheeler, S. Williamson, K. Iczkowski and I. Members, "The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma.", American Journal of Surgical Pathology, 2020;44(8):e87-e99.
- Z. Kos, A. Roblin, R. Kim, S. Michiels, B. Gallas, W. Chen, K. van de Vijver, S. Goel, S. Adams, S. Demaria, G. Viale, T. Nielsen, S. Badve, W. Symmans, C. Sotiriou, D. Rimm, S. Hewitt, C. Denkert, S. Loibl, S. Luen, J. Bartlett, P. Savas, G. Pruneri, D. Dillon, M. Cheang, A. Tutt, J. Hall, M. Kok, H. Horlings, A. Madabhushi, J. van der Laak, F. Ciompi, A. Laenkholm, E. Bellolio, T. Gruosso, S. Fox, J. Araya, G. Floris, J. Hudeček, L. Voorwerk, A. Beck, J. Kerner, D. Larsimont, S. Declercq, G. den Eynden, L. Pusztai, A. Ehinger, W. Yang, K. AbdulJabbar, Y. Yuan, R. Singh, C. Hiley, M. al Bakir, A. Lazar, S. Naber, S. Wienert, M. Castillo, G. Curigliano, M. Dieci, F. André, C. Swanton, J. Reis-Filho, J. Sparano, E. Balslev, I. Chen, E. Stovgaard, K. Pogue-Geile, K. Blenman, F. Penault-Llorca, S. Schnitt, S. Lakhani, A. Vincent-Salomon, F. Rojo, J. Braybrooke, M. Hanna, M. Soler-Monsó, D. Bethmann, C. Castaneda, K. Willard-Gallo, A. Sharma, H. Lien, S. Fineberg, J. Thagaard, L. Comerma, P. Gonzalez-Ericsson, E. Brogi, S. Loi, J. Saltz, F. Klaushen, L. Cooper, M. Amgad, D. Moore and R. Salgado, "Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer", npj Breast Cancer, 2020;6(1).
- M. Amgad, A. Stovgaard, E. Balslev, J. Thagaard, W. Chen, S. Dudgeon, A. Sharma, J. Kerner, C. Denkert, Y. Yuan, K. AbdulJabbar, S. Wienert, P. Savas, L. Voorwerk, A. Beck, A. Madabhushi, J. Hartman, M. Sebastian, H. Horlings, J. Hudeček, F. Ciompi, D. Moore, R. Singh, E. Roblin, M. Balancin, M. Mathieu, J. Lennerz, P. Kirtani, I. Chen, J. Braybrooke, G. Pruneri, S. Demaria, S. Adams, S. Schnitt, S. Lakhani, F. Rojo, L. Comerma, S. Badve, M. Khojasteh, W. Symmans, C. Sotiriou, P. Gonzalez-Ericsson, K. Pogue-Geile, R. Kim, D. Rimm, G. Viale, S. Hewitt, J. Bartlett, F. Penault-Llorca, S. Goel, H. Lien, S. Loibl, Z. Kos, S. Loi, M. Hanna, S. Michiels, M. Kok, T. Nielsen, A. Lazar, Z. Bago-Horvath, L. Kooreman, J. van der Laak, J. Saltz, B. Gallas, U. Kurkure, M. Barnes, R. Salgado and L. Cooper, "Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group", npj Breast Cancer, 2020;6(1).
- K. Murphy, H. Smits, A. Knoops, M. Korst, T. Samson, E. Scholten, S. Schalekamp, C. Schaefer-Prokop, R. Philipsen, A. Meijers, J. Melendez, B. van Ginneken and M. Rutten, "COVID-19 on the Chest Radiograph: A Multi-Reader Evaluation of an AI System", Radiology, 2020;296:E166-E172.
- O. Hamer, B. Rehbock and C. Schaefer-Prokop, "Idiopathische pulmonale Fibrose", Der Radiologe, 2020;60:549-562.
- M. Prokop, W. van Everdingen, T. van Rees Vellinga, J. van Quarles Ufford, L. Stoger, L. Beenen, B. Geurts, H. Gietema, J. Krdzalic, C. Schaefer-Prokop, B. van Ginneken, M. Brink and the COVID-19 Standardized Reporting Working Group of the Dutch Radiological Society, "CO-RADS - A categorical CT assessment scheme for patients with suspected COVID-19: definition and evaluation", Radiology, 2020;296(2):E97-E104.
- S. Habib, S. Rafiq, S. Zaidi, R. Ferrand, J. Creswell, B. Van Ginneken, W. Jamal, K. Azeemi, S. Khowaja and A. Khan, "Evaluation of computer aided detection of tuberculosis on chest radiography among people with diabetes in Karachi Pakistan", Scientific Reports, 2020;10(1):6276.
- G. Rubin, C. Ryerson, L. Haramati, N. Sverzellati, J. Kanne, S. Raoof, N. Schluger, A. Volpi, J. Yim, I. Martin, D. Anderson, C. Kong, T. Altes, A. Bush, S. Desai, J. Goldin, J. Goo, M. Humbert, Y. Inoue, H. Kauczor, F. Luo, P. Mazzone, M. Prokop, M. Remy-Jardin, L. Richeldi, C. Schaefer-Prokop, N. Tomiyama, A. Wells and A. Leung, "The Role of Chest Imaging in Patient Management During the COVID-19 Pandemic", Chest, 2020;158:106-116.
- K. Murphy, S. Habib, S. Zaidi, S. Khowaja, A. Khan, J. Melendez, E. Scholten, F. Amad, S. Schalekamp, M. Verhagen, R. Philipsen, A. Meijers and B. van Ginneken, "Computer aided detection of tuberculosis on chest radiographs: An evaluation of the CAD4TB v6 system", Scientific Reports, 2020;10:5492.
- C. van 't Klooster, H. Nathoe, J. Hjortnaes, M. Bots, I. Isgum, N. Lessmann, Y. van der Graaf, T. Leiner and F. Visseren, "Multifocal cardiovascular calcification in patients with established cardiovascular disease; prevalence, risk factors, and relation with recurrent cardiovascular disease", International Journal of Cardiology: Heart and Vasculature, 2020;27:100499.
- B. Liefers, J. Colijn, C. González-Gonzalo, T. Verzijden, J. Wang, N. Joachim, P. Mitchell, C. Hoyng, B. van Ginneken, C. Klaver and C. Sánchez, "A deep learning model for segmentation of geographic atrophy to study its long-term natural history", Ophthalmology, 2020;127(8):1086-1096.
- M. Balkenhol, W. Vreuls, C. Wauters, S. Mol, J. van der Laak and P. Bult, "Histological subtypes in triple negative breast cancer are associated with specific information on survival", Annals of Diagnostic Pathology, 2020;46:151490.
- I. Olaciregui-Ruiz, I. Torres-Xirau, J. Teuwen, U. van der Heide and A. Mans, "A Deep Learning-based correction to EPID dosimetry for attenuation and scatter in the Unity MR-Linac system", Physica Medica, 2020;71:124-131.
- H. Kauczor, A. Baird, T. Blum, L. Bonomo, C. Bostantzoglou, O. Burghuber, B. Čepicka, A. Comanescu, S. Courad, A. Devaraj, V. Jespersen, S. Morozov, I. Agmon, N. Peled, P. Powell, H. Prosch, S. Ravara, J. Rawlinson, M. Revel, M. Silca, A. Snoeckx, B. van Ginneken, J. van Meerbeeck, C. Vardavas, O. von Stackelberg, M. Gaga, O. behalf of the of (ESR) and T. (ERS), "ESR/ERS statement paper on lung cancer screening", European Radiology, 2020;30:3277-3294.
- H. Kauczor, A. Baird, T. Blum, L. Bonomo, C. Bostantzoglou, O. Burghuber, B. Čepicka, A. Comanescu, S. Couraud, A. Devaraj, V. Jespersen, S. Morozov, I. Nardi Agmon, N. Peled, P. Powell, H. Prosch, S. Ravara, J. Rawlinson, M. Revel, M. Silva, A. Snoeckx, B. van Ginneken, J. van Meerbeeck, C. Vardavas, O. von Stackelberg, M. Gaga, E. of (ESR) and T. (ERS), "ESR/ERS statement paper on lung cancer screening", European Respiratory Journal, 2020;55(2):1900506.
- M. Sieren, F. Brenne, A. Hering, H. Kienapfel, N. Gebauer, T. Oechtering, A. Fürschke, F. Wegner, E. Stahlberg, S. Heldmann, J. Barkhausen and A. Frydrychowicz, "Rapid study assessment in follow-up whole-body computed tomography in patients with multiple myeloma using a dedicated bone subtraction software", European Radiology, 2020;30:3198-3209.
- S. van Velzen, N. Lessmann, B. Velthuis, I. Bank, D. van den Bongard, T. Leiner, P. de Jong, W. Veldhuis, A. Correa, J. Terry, J. Carr, M. Viergever, H. Verkooijen and I. Išgum, "Deep learning for automatic calcium scoring in CT: Validation using multiple cardiac CT and chest CT protocols", Radiology, 2020;295(1):66-79.
- H. de Koning, C. van der Aalst, P. de Jong, E. Scholten, K. Nackaerts, M. Heuvelmans, J. Lammers, C. Weenink, U. Yousaf-Khan, N. Horeweg, S. van 't Westeinde, M. Prokop, W. Mali, F. Mohamed Hoesein, P. van Ooijen, J. Aerts, M. den Bakker, E. Thunnissen, J. Verschakelen, R. Vliegenthart, J. Walter, K. Ten Haaf, H. Groen and M. Oudkerk, "Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial", New England Journal of Medicine, 2020;382(6):503-513.
- T. Boers, Y. Hu, E. Gibson, D. Barratt, E. Bonmati, J. Krdzalic, F. van der Heijden, J. Hermans and H. Huisman, "Interactive 3D U-net for the Segmentation of the Pancreas in Computed Tomography Scans", Physics in Medicine and Biology, 2020;65(6):065002.
- N. Mahomed, B. van Ginneken, R. Philipsen, J. Melendez, D. Moore, H. Moodley, T. Sewchuran, D. Mathew and S. Madhi, "Computer-aided diagnosis for World Health Organization-defined chest radiograph primary-endpoint pneumonia in children", Pediatric Radiology, 2020;50(4):482-491.
- W. Bulten, H. Pinckaers, H. van Boven, R. Vink, T. de Bel, B. van Ginneken, J. van der Laak, C. de Hulsbergen-van Kaa and G. Litjens, "Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study", Lancet Oncology, 2020;21(2):233-241.
- F. Ayatollahi, S. Shokouhi and J. Teuwen, "Differentiating Benign and Malignant Mass and non-Mass Lesions in Breast DCE-MRI using Normalized Frequency-based Features", International Journal of Computer Assisted Radiology and Surgery, 2020;15(2):297-307.
- C. González-Gonzalo, V. Sánchez-Gutiérrez, P. Hernández-Martínez, I. Contreras, Y. Lechanteur, A. Domanian, B. van Ginneken and C. Sánchez, "Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and age-related macular degeneration", Acta Ophthalmologica, 2020;98(4):368-377.
- M. Dekker, F. Waissi, I. Bank, N. Lessmann, I. Išgum, B. Velthuis, A. Scholtens, G. Leenders, G. Pasterkamp, D. de Kleijn, L. Timmers and A. Mosterd, "Automated calcium scores collected during myocardial perfusion imaging improve identification of obstructive coronary artery disease", International Journal of Cardiology: Heart and Vasculature, 2020;26:100434.
- C. Celeng, R. Takx, N. Lessmann, P. Maurovich-Horvat, T. Leiner, I. Išgum and P. de Jong, "The association between marital status, coronary computed tomography imaging biomarkers, and mortality in a lung cancer screening population", Journal of Thoracic Imaging, 2020;35:204-209.
- S. van de Leemput, M. Prokop, B. van Ginneken and R. Manniesing, "Stacked Bidirectional Convolutional LSTMs for Deriving 3D Non-contrast CT from Spatiotemporal 4D CT", IEEE Transactions on Medical Imaging, 2020;39(4):985-996.
- J. van Zelst, T. Tan, R. Mann and N. Karssemeijer, "Validation of radiologists' findings by computer-aided detection (CAD) software in breast cancer detection with automated 3D breast ultrasound: a concept study in implementation of artificial intelligence software", Acta Radiologica, 2020;61(3):312-320.
- S. Kazeminia, C. Baur, A. Kuijper, B. van Ginneken, N. Navab, S. Albarqouni and A. Mukhopadhyay, "GANs for Medical Image Analysis", Artificial Intelligence in Medicine, 2020;109:101938.
- E. Sogancioglu, K. Murphy, E. Calli, E. Scholten, S. Schalekamp and B. Van Ginneken, "Cardiomegaly Detection on Chest Radiographs: Segmentation Versus Classification", IEEE Access, 2020;8:94631-94642.
- M. Meijs, S. Pegge, M. Vos, A. Patel, S. van de Leemput, K. Koschmieder, M. Prokop, F. Meijer and R. Manniesing, "Cerebral Artery and Vein Segmentation in Fourdimensional CT Angiography Using Convolutional Neural Networks", Radiology: Artificial Intelligence, 2020;2(4):e190178.
- J. Goudsmit and J. Teuwen, "Tussen data en theorie", Tijdschrift voor Toezicht, 2020;11(1):48-53.
- A. Schreuder and C. Schaefer-Prokop, "Perifissural nodules: ready for application into lung cancer CT screening?", Annals of Translational Medicine, 2020.
- E. Thee, D. Luttikhuizen, H. Lemij, F. Verbraak, C. Sánchez and C. Klaver, "Artificial intelligence for eye care", Nederlands Tijdschrift voor Geneeskunde, 2020.
- P. Bándi, M. Balkenhol, B. van Ginneken, J. van der Laak and G. Litjens, "Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks", PeerJ, 2019;7:e8242.
- J. Bokhorst, A. Blank, A. Lugli, I. Zlobec, H. Dawson, M. Vieth, L. Rijstenberg, S. Brockmoeller, M. Urbanowicz, J. Flejou, R. Kirsch, F. Ciompi, J. van der Laak and I. Nagtegaal, "Assessment of individual tumor buds using keratin immunohistochemistry: moderate interobserver agreement suggests a role for machine learning", Modern Pathology, 2019.
- A. Patel, F. Schreuder, C. Klijn, M. Prokop, B. van Ginneken, H. Marquering, Y. Roos, M. Baharoglu, F. Meijer and R. Manniesing, "Intracerebral haemorrhage segmentation in non-contrast CT", Scientific Reports, 2019;9(1):17858.
- J. Bleker, T. Kwee, R. Dierckx, I. de Jong, H. Huisman and D. Yakar, "Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer", European Radiology, 2019.
- M. Bakker, S. de Lange, R. Pijnappel, R. Mann, P. Peeters, E. Monninkhof, M. Emaus, C. Loo, R. Bisschops, M. Lobbes, M. de Jong, K. Duvivier, J. Veltman, N. Karssemeijer, H. de Koning, P. van Diest, W. Mali, M. van den Bosch, W. Veldhuis, C. van Gils and D. Group, "Supplemental MRI Screening for Women with Extremely Dense Breast Tissue", New England Journal of Medicine, 2019;381(22):2091-2102.
- O. Debats, G. Litjens and H. Huisman, "Lymph node detection in MR Lymphography: false positive reduction using multi-view convolutional neural networks", PeerJ, 2019;7:e8052.
- M. Mullooly, B. Ehteshami Bejnordi, R. Pfeiffer, S. Fan, M. Palakal, M. Hada, P. Vacek, D. Weaver, J. Shepherd, B. Fan, A. Mahmoudzadeh, J. Wang, S. Malkov, J. Johnson, S. Herschorn, B. Sprague, S. Hewitt, L. Brinton, N. Karssemeijer, J. van der Laak, A. Beck, M. Sherman and G. Gierach, "Application of convolutional neural networks to breast biopsies to delineate tissue correlates of mammographic breast density", NPJ Breast Cancer, 2019;5:43.
- J. van der Laak, F. Ciompi and G. Litjens, "No pixel-level annotations needed", Nature Biomedical Engineering, 2019;3(11):855-856.
- C. Balta, R. Bouwman, M. Broeders, N. Karssemeijer, W. Veldkamp, I. Sechopoulos and R. van Engen, "Optimization of the difference-of-Gaussian channel sets for the channelized Hotelling observer", Journal of Medical Imaging, 2019;6(3):035501.
- A. Hering, S. Kuckertz, S. Heldmann and M. Heinrich, "Memory-efficient 2.5D convolutional transformer networks for multi-modal deformable registration with weak label supervision applied to whole-heart CT and MRI scans", Computer Assisted Radiology and Surgery, 2019.
- K. Wiegertjes, A. ter Telgte, P. Oliveira, E. van Leijsen, M. Bergkamp, I. van Uden, M. Ghafoorian, H. van der Holst, D. Norris, B. Platel, C. Klijn, A. Tuladhar and F. de Leeuw, "The role of small diffusion-weighted imaging lesions in cerebral small vessel disease", Neurology, 2019;93:e1627-e1634.
- D. Valkenburg, E. Runhart, N. Bax, B. Liefers, S. Lambertus, C. Sánchez, F. Cremers and C. Hoyng, "Highly variable disease courses in siblings with Stargardt disease", Ophthalmology, 2019;126(12):1712-1721.
- M. Hermsen, T. de Bel, M. den Boer, E. Steenbergen, J. Kers, S. Florquin, J. Roelofs, M. Stegall, M. Alexander, B. Smith, B. Smeets, L. Hilbrands and J. van der Laak, "Deep-learning based histopathologic assessment of kidney tissue", Journal of the American Society of Nephrology, 2019;30(10):1968-1979.
- Z. Swiderska-Chadaj, H. Pinckaers, M. van Rijthoven, M. Balkenhol, M. Melnikova, O. Geessink, Q. Manson, M. Sherman, A. Polonia, J. Parry, M. Abubakar, G. Litjens, J. van der Laak and F. Ciompi, "Learning to detect lymphocytes in immunohistochemistry with deep learning", Medical Image Analysis, 2019;58:101547.
- N. deSouza, E. Achten, A. Alberich-Bayarri, F. Bamberg, R. Boellaard, O. Clement, L. Fournier, F. Gallagher, X. Golay, C. Heussel, E. Jackson, R. Manniesing, M. Mayerhofer, E. Neri, J. O'Connor, K. Oguz, A. Persson, M. Smits, E. van Beek, C. Zech and E. of Radiology, "Validated imaging biomarkers as decision-making tools in clinical trials and routine practice: current status and recommendations from the EIBALL* subcommittee of the European Society of Radiology (ESR)", Insights into Imaging, 2019;10(1):87.
- D. Tellez, G. Litjens, P. Bándi, W. Bulten, J. Bokhorst, F. Ciompi and J. van der Laak, "Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology", Medical Image Analysis, 2019;58:101544.
- R. Philipsen, C. Sánchez, J. Melendez, W. Lew and B. van Ginneken, "Automated chest X-ray reading for tuberculosis in the Philippines to improve case detection: a cohort study", International Journal of Tuberculosis and Lung Disease, 2019;23(7):805-810.
- A. Halilovic, D. Verweij, A. Simons, M. Stevens-Kroef, S. Vermeulen, J. Elsink, B. Tops, I. Otte-Holler, J. van der Laak, C. van de Water, O. Boelens, M. Schlooz-Vries, J. Dijkstra, I. Nagtegaal, J. Tol, P. van Cleef, P. Span and P. Bult, "HER2, chromosome 17 polysomy and DNA ploidy status in breast cancer; a translational study", Scientific Reports, 2019;9(1):11679.
- G. Aresta, C. Jacobs, T. Araujo, A. Cunha, I. Ramos, B. van Ginneken and A. Campilho, "iW-Net: an automatic and minimalistic interactive lung nodule segmentation deep network", Scientific Reports, 2019;9(1):11591.
- M. Meijs, S. Pegge, K. Murayama, H. Boogaarts, M. Prokop, P. Willems, R. Manniesing and F. Meijer, "Color mapping of 4D-CTA for the detection of cranial arteriovenous shunts", American Journal of Neuroradiology, 2019;40(9):1498-1504.
- G. Litjens, F. Ciompi, J. Wolterink, B. de Vos, T. Leiner, J. Teuwen and I. Isgum, "State-of-the-Art Deep Learning in Cardiovascular Image Analysis", JACC Cardiovascular Imaging, 2019;12(8 Pt 1):1549-1565.
- V. Schreur, A. de Breuk, F. Venhuizen, C. Sánchez, C. Tack, B. Klevering, E. de Jong and C. Hoyng, "Retinal hyperreflective foci in type 1 diabetes mellitus", Retina, 2019.
- E. Abels, L. Pantanowitz, F. Aeffner, M. Zarella, J. van der Laak, M. Bui, V. Vemuri, A. Parwani, J. Gibbs, E. Agosto-Arroyo, A. Beck and C. Kozlowski, "Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association", Journal of Pathology, 2019;249(3):286-294.
- H. Huisman, "Solid Science of AI Supporting Bladder Cancer CT Reading", Academic Radiology, 2019;26(9):1146-1147.
- C. Jacobs and B. van Ginneken, "Google's lung cancer AI: a promising tool that needs further validation", Nature Reviews Clinical Oncology, 2019;16(9):532-533.
- M. Balkenhol, D. Tellez, W. Vreuls, P. Clahsen, H. Pinckaers, F. Ciompi, P. Bult and J. van der Laak, "Deep learning assisted mitotic counting for breast cancer", Laboratory Investigation, 2019.
- S. Saadatmand, H. Geuzinge, E. Rutgers, R. Mann, D. de van Roy Zuidewijn, H. Zonderland, R. Tollenaar, M. Lobbes, M. Ausems, M. van 't Riet, M. Hooning, I. Mares-Engelberts, E. Luiten, E. Heijnsdijk, C. Verhoef, N. Karssemeijer, J. Oosterwijk, I. Obdeijn, H. de Koning, M. Tilanus-Linthorst and F. study group, "MRI versus mammography for breast cancer screening in women with familial risk (FaMRIsc): a multicentre, randomised, controlled trial", Lancet Oncology, 2019;20(8):1136-1147.
- N. Khalili, N. Lessmann, E. Turk, N. Claessens, R. de Heus, T. Kolk, M. Viergever, M. Benders and I. Išgum, "Automatic brain tissue segmentation in fetal MRI using convolutional neural networks", Magnetic Resonance Imaging, 2019;64:77-89.
- I. Munsterman, M. Van Erp, G. Weijers, C. Bronkhorst, C. de Korte, J. Drenth, J. van der Laak and E. Tjwa, "A Novel Automatic Digital Algorithm that Accurately Quantifies Steatosis in NAFLD on Histopathological Whole-Slide Images", Cytometry Part B-Clinical Cytometry, 2019.
- E. van Leijsen, M. Bergkamp, I. van Uden, S. Cooijmans, M. Ghafoorian, H. van der Holst, D. Norris, R. Kessels, B. Platel, A. Tuladhar and F. de Leeuw, "Cognitive consequences of regression of cerebral small vessel disease", European Stroke Journal, 2019;4(1):85-89.
- G. Chlebus, H. Meine, S. Thoduka, N. Abolmaali, B. van Ginneken, H. Hahn and A. Schenk, "Reducing inter-observer variability and interaction time of MR liver volumetry by combining automatic CNN-based liver segmentation and manual corrections", PLoS One, 2019;14(5):e0217228.
- D. Grob, E. Smit, J. Prince, J. Kist, L. Stöger, B. Geurts, M. Snoeren, R. van Dijk, L. Oostveen, M. Prokop, C. Schaefer-Prokop, I. Sechopoulos and M. Brink, "Iodine Maps from Subtraction CT or Dual-Energy CT to Detect Pulmonary Emboli with CT Angiography: A Multiple-Observer Study", Radiology, 2019;292:197-205.
- W. Sanderink, B. Laarhuis, L. Strobbe, I. Sechopoulos, P. Bult, N. Karssemeijer and R. Mann, "A systematic review on the use of the breast lesion excision system in breast disease", Insights into Imaging, 2019;10(1):49.
- T. Heesterbeek, E. de Jong, I. Acar, J. Groenewoud, B. Liefers, C. Sánchez, T. Peto, C. Hoyng, D. Pauleikhoff, H. Hense and A. den Hollander, "Genetic risk score has added value over initial clinical grading stage in predicting disease progression in age-related macular degeneration", Scientific Reports, 2019;9(1):6611.
- J. Luiten, B. Korte, A. Voogd, W. Vreuls, E. Luiten, L. Strobbe, M. Rutten, M. Plaisier, P. Lohle, M. Hooijen, V. Tjan-Heijnen and L. Duijm, "Trends in frequency and outcome of high-risk breast lesions at core needle biopsy in women recalled at biennial screening mammography, a multiinstitutional study", International Journal of Cancer, 2019;145:2720-2727.
- A. Rodriguez-Ruiz, K. Lang, A. Gubern-Merida, J. Teuwen, M. Broeders, G. Gennaro, P. Clauser, T. Helbich, M. Chevalier, T. Mertelmeier, M. Wallis, I. Andersson, S. Zackrisson, I. Sechopoulos and R. Mann, "Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study", European Radiology, 2019;29(9):4825-4832.
- L. Aprupe, G. Litjens, T. Brinker, J. van der Laak and N. Grabe, "Robust and accurate quantification of biomarkers of immune cells in lung cancer micro-environment using deep convolutional neural networks", PeerJ, 2019;7:e6335.
- M. Balkenhol, P. Bult, D. Tellez, W. Vreuls, P. Clahsen, F. Ciompi and J. van der Laak, "Deep learning and manual assessment show that the absolute mitotic count does not contain prognostic information in triple negative breast cancer", Cellular Oncology, 2019;42:4555-4569.
- B. Sturm, D. Creytens, M. Cook, J. Smits, M. van Dijk, E. Eijken, E. Kurpershoek, H. Kusters-Vandevelde, A. Ooms, C. Wauters, W. Blokx and J. van der Laak, "Validation of Whole-slide Digitally Imaged Melanocytic Lesions: Does Z-Stack Scanning Improve Diagnostic Accuracy?", Journal of Pathology Informatics, 2019;10:6.
- M. Maas, G. Litjens, A. Wright, U. Attenberger, M. Haider, T. Helbich, B. Kiefer, K. Macura, D. Margolis, A. Padhani, K. Selnaes, G. Villeirs, J. Futterer and T. Scheenen, "A Single-Arm, Multicenter Validation Study of Prostate Cancer Localization and Aggressiveness With a Quantitative Multiparametric Magnetic Resonance Imaging Approach", Investigative Radiology, 2019.
- M. Veta, Y. Heng, N. Stathonikos, B. Bejnordi, F. Beca, T. Wollmann, K. Rohr, M. Shah, D. Wang, M. Rousson, M. Hedlund, D. Tellez, F. Ciompi, E. Zerhouni, D. Lanyi, M. Viana, V. Kovalev, V. Liauchuk, H. Phoulady, T. Qaiser, S. Graham, N. Rajpoot, E. Sjoblom, J. Molin, K. Paeng, S. Hwang, S. Park, Z. Jia, E. Chang, Y. Xu, A. Beck, P. van Diest and J. Pluim, "Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge", Medical Image Analysis, 2019;54(5):111-121.
- D. Grob, E. Smit, L. Oostveen, M. Snoeren, M. Prokop, C. Schaefer-Prokop, I. Sechopoulos and M. Brink, "Image Quality of Iodine Maps for Pulmonary Embolism: A Comparison of Subtraction CT and Dual-Energy CT", American Journal of Roentgenology, 2019;212:1253-1259.
- H. Bogunovic, F. Venhuizen, S. Klimscha, S. Apostolopoulos, A. Bab-Hadiashar, U. Bagci, M. Beg, L. Bekalo, Q. Chen, C. Ciller, K. Gopinath, A. Gostar, K. Jeon, Z. Ji, S. Kang, D. Koozekanani, D. Lu, D. Morley, K. Parhi, H. Park, A. Rashno, M. Sarunic, S. Shaikh, J. Sivaswamy, R. Tennakoon, S. Yadav, S. De Zanet, S. Waldstein, B. Gerendas, C. Klaver, C. Sánchez and U. Schmidt-Erfurth, "RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge", IEEE Transactions on Medical Imaging, 2019;38(8):1858-1874.
- O. Geessink, A. Baidoshvili, J. Klaase, B. Ehteshami Bejnordi, G. Litjens, G. van Pelt, W. Mesker, I. Nagtegaal, F. Ciompi and J. van der Laak, "Computer aided quantification of intratumoral stroma yields an independent prognosticator in rectal cancer", Cellular Oncology, 2019:1-11.
- J. Gómez-Valverde, A. Antón, G. Fatti, B. Liefers, A. Herranz, A. Santos, C. Sánchez and M. Ledesma-Carbayo, "Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning", Biomedical Optics Express, 2019;10(2):892-913.
- S. Vreemann, M. Dalmis, P. Bult, N. Karssemeijer, M. Broeders, A. Gubern-Mérida and R. Mann, "Amount of fibroglandular tissue FGT and background parenchymal enhancement BPE in relation to breast cancer risk and false positives in a breast MRI screening program", European Radiology, 2019;29:4678-4690.
- A. Schreuder, C. Jacobs, L. Gallardo-Estrella, M. Prokop, C. Schaefer-Prokop and B. van Ginneken, "Predicting all-cause and lung cancer mortality using emphysema score progression rate between baseline and follow-up chest CT images: A comparison of risk model performances", PLoS One, 2019;14(2):e0212756.
- N. Lessmann, B. van Ginneken, P. de Jong and I. Išgum, "Iterative fully convolutional neural networks for automatic vertebra segmentation and identification", Medical Image Analysis, 2019;53:142-155.
- G. Napolitano, E. Lynge, M. Lillholm, I. Vejborg, C. van Gils, M. Nielsen and N. Karssemeijer, "Change in mammographic density across birth cohorts of Dutch breast cancer screening participants", International Journal of Cancer, 2019;145(11):2954-2962.
- W. Bulten, P. Bándi, J. Hoven, R. van de Loo, J. Lotz, N. Weiss, J. van der Laak, B. van Ginneken, C. Hulsbergen-van de Kaa and G. Litjens, "Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard", Scientific Reports, 2019;9(1).
- J. Charbonnier, E. Pompe, C. Moore, S. Humphries, B. van Ginneken, B. Make, E. Regan, J. Crapo, E. van Rikxoort and D. Lynch, "Airway wall thickening on CT: Relation to smoking status and severity of COPD", Respiratory Medicine, 2019;146:36-41.
- N. Lessmann, P. de Jong, C. Celeng, R. Takx, M. Viergever, B. van Ginneken and I. Išgum, "Sex Differences in Coronary Artery and Thoracic Aorta Calcification and Their Association With Cardiovascular Mortality in Heavy Smokers", JACC Cardiovascular Imaging, 2019;12:1808-1817.
- M. Dalmis, A. Gubern-Mérida, S. Vreemann, P. Bult, N. Karssemeijer, R. Mann and J. Teuwen, "Artificial Intelligence Based Classification of Breast Lesions Imaged With a Multi-Parametric Breast MRI Protocol With ultrafast DCE-MRI, T2 and DWI", Investigative Radiology, 2019;56(6):325-332.
- T. van den Heuvel, H. Petros, S. Santini, C. de Korte and B. van Ginneken, "Automated Fetal Head Detection and Circumference Estimation from Free-Hand Ultrasound Sweeps Using Deep Learning in Resource-Limited Countries", Ultrasound in Medicine and Biology, 2019;45(3):773-785.
- C. Balta, R. Bouwman, I. Sechopoulos, M. Broeders, N. Karssemeijer, R. van Engen and W. Veldkamp, "Can a channelized Hotelling observer assess image quality in acquired mammographic images of an anthropomorphic breast phantom including image processing?", Medical Physics, 2019;46:714-725.
- M. Bergkamp, A. Tuladhar, H. van der Holst, E. van Leijsen, M. Ghafoorian, I. van Uden, E. van Dijk, D. Norris, B. Platel, R. Esselink and F. Leeuw, "Brain atrophy and strategic lesion location increases risk of parkinsonism in cerebral small vessel disease", Parkinsonism & Related Disorders, 2019;61:94-100.
- B. van Ginneken, "Deep Learning for Triage of Chest Radiographs: Should Every Institution Train Its Own System?", Radiology, 2019;290:545-546.
- M. Tammemagi, A. Ritchie, S. Atkar-Khattra, B. Dougherty, C. Sanghera, J. Mayo, R. Yuan, D. Manos, A. McWilliams, H. Schmidt, M. Gingras, S. Pasian, L. Stewart, S. Tsai, J. M.Seely, P. Burrowes, R. Bhatia, E. A.Haider, C. Boylan, C. Jacobs, B. van Ginneken, M. Tsao, S. Lam and the Pan-Canadian Early Detection of Lung Cancer Study Group, "Predicting Malignancy Risk of Screen Detected Lung Nodules - Mean Diameter or Volume", Journal of Thoracic Oncology, 2019;14(2):203-211.
- R. Finger, S. Schmitz-Valckenberg, M. Schmid, G. Rubin, H. Dunbar, A. Tufail, D. Crabb, A. Binns, C. Sánchez, P. Margaron, G. Normand, M. Durbin, U. Luhmann, P. Zamiri, J. Cunha-Vaz, F. Asmus, F. Holz and O. behalf of the consortium, "MACUSTAR: Development and Clinical Validation of Functional, Structural, and Patient-Reported Endpoints in Intermediate Age-Related Macular Degeneration", Ophthalmologica, 2019;241(2):61-72.
- S. van Riel, C. Jacobs, E. Scholten, R. Wittenberg, M. Winkler Wille, B. de Hoop, R. Sprengers, O. Mets, B. Geurts, M. Prokop, C. Schaefer-Prokop and B. van Ginneken, "Observer variability for Lung-RADS categorisation of lung cancer screening CTs: impact on patient management", European Radiology, 2019;29(2):924-931.
- V. Schreur, A. Domanian, B. Liefers, F. Venhuizen, B. Klevering, C. Hoyng, E. de Jong and T. Theelen, "Morphological and topographical appearance of microaneurysms on optical coherence tomography angiography", British Journal of Ophthalmology, 2019;103(5):630-635.
- R. Becks, R. Manniesing, J. Vister, S. Pegge, S. Steens, E. van Dijk, M. Prokop and F. Meijer, "Brain CT Perfusion Improves Intracranial Vessel Occlusion Detection on CT Angiography", Journal of Neuroradiology, 2019;46(2):124-129.
- A. Patel, S. van de Leemput, M. Prokop, B. van Ginneken and R. Manniesing, "Image Level Training and Prediction: Intracranial Hemorrhage Identification in 3D Non-Contrast CT", IEEE Access, 2019;7(1):92355-92364.
- S. van de Leemput, M. Meijs, A. Patel, F. Meijer, B. van Ginneken and R. Manniesing, "Multiclass Brain Tissue Segmentation in 4D CT using Convolutional Neural Networks", IEEE Access, 2019;7(1):51557-51569.
- S. van de Leemput, J. Teuwen, B. van Ginneken and R. Manniesing, "MemCNN: A Python/PyTorch package for creating memory-efficient invertible neural networks", Journal of Open Source Software, 2019;4(39):1576.
- C. Noordman and G. Vreeswijk, "Evolving novelty strategies for the Iterated Prisoner's Dilemma in deceptive tournaments", Theoretical Computer Science, 2019;785:1-16.
- M. Emaus, I. Išgum, S. van Velzen, H. van den Bongard, S. Gernaat, N. Lessmann, M. Sattler, A. Teske, J. Penninkhof, H. Meijer, J. Pignol and H. Verkooijen, "Bragatston study protocol: a multicentre cohort study on automated quantification of cardiovascular calcifications on radiotherapy planning CT scans for cardiovascular risk prediction in patients with breast cancer", BMJ Open, 2019;9:e028752.
- B. de Vos, J. Wolterink, T. Leiner, P. de Jong, N. Lessmann and I. Isgum, "Direct automatic coronary calcium scoring in cardiac and chest CT", IEEE Transactions on Medical Imaging, 2019;38:2127-38.
- S. Armato, H. Huisman, K. Drukker, L. Hadjiiski, J. Kirby, N. Petrick, G. Redmond, M. Giger, K. Cha, A. Mamonov, J. Kalpathy-Cramer and K. Farahani, "The PROSTATEx Challenges for Computerized Classification of Prostate Lesions from Multi-Parametric Magnetic Resonance Images", Journal of Medical Imaging, 2018;5(4):044501.
- P. Bándi, O. Geessink, Q. Manson, M. van Dijk, M. Balkenhol, M. Hermsen, B. Bejnordi, B. Lee, K. Paeng, A. Zhong, Q. Li, F. Zanjani, S. Zinger, K. Fukuta, D. Komura, V. Ovtcharov, S. Cheng, S. Zeng, J. Thagaard, A. Dahl, H. Lin, H. Chen, L. Jacobsson, M. Hedlund, M. Cetin, E. Halici, H. Jackson, R. Chen, F. Both, J. Franke, H. Kusters-Vandevelde, W. Vreuls, P. Bult, B. van Ginneken, J. van der Laak and G. Litjens, "From detection of individual metastases to classification of lymph node status at the patient level: the CAMELYON17 challenge", IEEE Transactions on Medical Imaging, 2018;38(2):550-560.
- O. Mets, C. Schaefer-Prokop and P. de Jong, "Cyst-related primary lung malignancies: an important and relatively unknown imaging appearance of (early) lung cancer", European Respiratory Review, 2018;27:180079.
- L. Maier-Hein, M. Eisenmann, A. Reinke, S. Onogur, M. Stankovic, P. Scholz, T. Arbel, H. Bogunovic, A. Bradley, A. Carass, C. Feldmann, A. Frangi, P. Full, B. van Ginneken, A. Hanbury, K. Honauer, M. Kozubek, B. Landman, K. Marz, O. Maier, K. Maier-Hein, B. Menze, H. Muller, P. Neher, W. Niessen, N. Rajpoot, G. Sharp, K. Sirinukunwattana, S. Speidel, C. Stock, D. Stoyanov, A. Taha, F. van der Sommen, C. Wang, M. Weber, G. Zheng, P. Jannin and A. Kopp-Schneider, "Why rankings of biomedical image analysis competitions should be interpreted with care", Nature Communications, 2018;9(1):5217.
- C. Reijnen, H. Kusters-Vandevelde, K. Abbink, P. Zusterzeel, A. van Herwaarden, J. van der Laak, L. Massuger, M. Snijders, J. Pijnenborg and J. Bulten, "Quantification of Leydig cells and stromal hyperplasia in the postmenopausal ovary of women with endometrial carcinoma", Human Pathology, 2018.
- A. Nair, E. Bartlett, S. Walsh, A. Wells, N. Navani, G. Hardavella, S. Bhalla, L. Calandriello, A. Devaraj, J. Goo, J. Klein, H. MacMahon, C. Schaefer-Prokop, J. Seo, N. Sverzellati and S. Desai, "Variable radiological lung nodule evaluation leads to divergent management recommendations", European Respiratory Journal, 2018;52:1801359.
- O. Mets, C. Schaefer-Prokop and P. de Jong, "Primary lung cancer in patients with previous malignancies: a nationwide study", Thorax, 2018;74:492-495.
- S. Balocco, F. Ciompi, J. Rigla, X. Carrillo, J. Mauri and P. Radeva, "Assessment Of Intra-coronary Stent Location And Extension In Intravascular Ultrasound Sequences", Medical Physics, 2018;46(2):484-493.
- M. Bergkamp, J. Wissink, E. van Leijsen, M. Ghafoorian, D. Norris, E. van Dijk, B. Platel, A. Tuladhar and F. de Leeuw, "Risk of Nursing Home Admission in Cerebral Small Vessel Disease", Stroke, 2018;49(11):2659-2665.
- G. Chlebus, A. Schenk, J. Moltz, B. van Ginneken, H. Hahn and H. Meine, "Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing", Scientific Reports, 2018;8(1):15497.
- E. van Leijsen, J. Tay, I. van Uden, E. Kooijmans, M. Bergkamp, H. van der Holst, M. Ghafoorian, B. Platel, D. Norris, R. Kessels, H. Markus, A. Tuladhar and F. de Leeuw, "Memory decline in elderly with cerebral small vessel disease explained by temporal interactions between white matter hyperintensities and hippocampal atrophy", Hippocampus, 2018;29:500-510.
- D. Grob, L. Oostveen, M. Prokop, C. Schaefer-Prokop, I. Sechopoulos and M. Brink, "Imaging of pulmonary perfusion using subtraction CT angiography is feasible in clinical practice", European Radiology, 2018;29:1408-1414.
- T. van den Heuvel, D. de Bruijn, C. de Korte and B. van Ginneken, "Automated measurement of fetal head circumference using 2D ultrasound images", PLoS One, 2018;13(8).
- S. Zaidi, S. Habib, B. van Ginneken, R. Ferrand, J. Creswell, S. Khowaja and A. Khan, "Evaluation of the diagnostic accuracy of Computer-Aided Detection of tuberculosis on Chest radiography among private sector patients in Pakistan", Scientific Reports, 2018;8(1):12339.
- T. van den Heuvel, D. de Bruijn, D. de Moens-van Moesdijk, A. Beverdam, B. van Ginneken and C. de Korte, "Comparison Study of Low-Cost Ultrasound Devices for Estimation of Gestational Age in Resource-Limited Countries", Ultrasound in Medicine and Biology, 2018;44(11):2250-2260.
- R. Koesoemadinata, K. Kranzer, R. Livia, N. Susilawati, J. Annisa, N. Soetedjo, R. Ruslami, R. Philipsen, B. van Ginneken, R. Soetikno, R. van Crevel, B. Alisjahbana and P. Hill, "Computer-assisted chest radiography reading for tuberculosis screening in people living with diabetes mellitus", International Journal of Tuberculosis and Lung Disease, 2018;22(9):1088-1094.
- S. Vreemann, J. van Zelst, M. Schlooz-Vries, P. Bult, N. Hoogerbrugge, N. Karssemeijer, A. Gubern-Merida and R. Mann, "The added value of mammography in different age-groups of women with and without BRCA mutation screened with breast MRI", Breast Cancer Research, 2018;20(1):84.
- M. Silva, M. Prokop, C. Jacobs, G. Capretti, N. Sverzellati, F. Ciompi, B. van Ginneken, C. Schaefer-Prokop, C. Galeone, A. Marchiano and U. Pastorino, "Long-term Active Surveillance of Screening Detected Subsolid Nodules is a Safe Strategy to Reduce Overtreatment", Journal of Thoracic Oncology, 2018;13:1454-1463.
- Z. Bian, J. Charbonnier, J. Liu, D. Zhao, D. Lynch and B. van Ginneken, "Small airway segmentation in thoracic computed tomography scans: a machine learning approach", Physics in Medicine and Biology, 2018;63(15):155024.
- D. Tellez, M. Balkenhol, I. Otte-Holler, R. van de Loo, R. Vogels, P. Bult, C. Wauters, W. Vreuls, S. Mol, N. Karssemeijer, G. Litjens, J. van der Laak and F. Ciompi, "Whole-Slide Mitosis Detection in H&E Breast Histology Using PHH3 as a Reference to Train Distilled Stain-Invariant Convolutional Networks", IEEE Transactions on Medical Imaging, 2018;37(9):2126 - 2136.
- A. Bria, C. Marrocco, L. Borges, M. Molinara, A. Marchesi, J. Mordang, N. Karssemeijer and F. Tortorella, "Improving the Automated Detection of Calcifications using Adaptive Variance Stabilization", IEEE Transactions on Medical Imaging, 2018;37(8):1857-1864.
- A. Schreuder, B. van Ginneken, E. Scholten, C. Jacobs, M. Prokop, N. Sverzellati, S. Desai, A. Devaraj and C. Schaefer-Prokop, "Classification of CT Pulmonary Opacities as Perifissural Nodules: Reader Variability", Radiology, 2018;288(3):867-875.
- J. van Zelst, S. Vreemann, H. Witt, A. Gubern-Merida, M. Dorrius, K. Duvivier, S. Lardenoije-Broker, M. Lobbes, C. Loo, W. Veldhuis, J. Veltman, D. Drieling, N. Karssemeijer and R. Mann, "Multireader Study on the Diagnostic Accuracy of Ultrafast Breast Magnetic Resonance Imaging for Breast Cancer Screening", Investigative Radiology, 2018;53(10):579-586.
- A. Baidoshvili, A. Bucur, J. van Leeuwen, J. van der Laak, P. Kluin and P. van Diest, "Evaluating the benefits of digital pathology implementation: time savings in laboratory logistics", Histopathology, 2018;73(5):784-794.
- B. Ehteshami Bejnordi, M. Mullooly, R. Pfeiffer, S. Fan, P. Vacek, D. Weaver, S. Herschorn, L. Brinton, B. van Ginneken, N. Karssemeijer, A. Beck, G. Gierach, J. van der Laak and M. Sherman, "Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies", Modern Pathology, 2018;31(10):1502-1512.
- A. Baidoshvili, N. Stathonikos, G. Freling, J. Bart, N. 't Hart, J. van der Laak, J. Doff, B. van der Vegt, M. Kluin Philip and P. van Dies, "Validation of a whole-slide image-based teleconsultation network", Histopathology, 2018;73:777-783.
- G. Litjens, P. Bándi, B. Ehteshami Bejnordi, O. Geessink, M. Balkenhol, P. Bult, A. Halilovic, M. Hermsen, R. van de Loo, R. Vogels, Q. Manson, N. Stathonikos, A. Baidoshvili, P. van Diest, C. Wauters, M. van Dijk and J. van der Laak, "1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset", GigaScience, 2018;7(6):1-8.
- K. Chung, O. Mets, P. Gerke, C. Jacobs, A. den Harder, E. Scholten, M. Prokop, P. de Jong, B. van Ginneken and C. Schaefer-Prokop, "Brock malignancy risk calculator for pulmonary nodules: validation outside a lung cancer screening population", Thorax, 2018;73(9):857-863.
- S. de Lange, M. Bakker, E. Monninkhof, P. Peeters, P. de Koekkoek-Doll, R. Mann, M. Rutten, R. Bisschops, J. Veltman, K. Duvivier, M. Lobbes, H. de Koning, N. Karssemeijer, R. Pijnappel, W. Veldhuis and C. van Gils, "Reasons for (non)participation in supplemental population-based MRI breast screening for women with extremely dense breasts", Clinical Radiology, 2018;73(8):759e1-759e9.
- E. van Leijsen, M. Bergkamp, I. van Uden, M. Ghafoorian, H. van der Holst, D. Norris, B. Platel, A. Tuladhar and F. de Leeuw, "Progression of White Matter Hyperintensities Preceded by Heterogeneous Decline of Microstructural Integrity", Stroke, 2018;49:1386-1393.
- J. Wanders, C. van Gils, N. Karssemeijer, K. Holland, M. Kallenberg, P. Peeters, M. Nielsen and M. Lillholm, "The combined effect of mammographic texture and density on breast cancer risk: a cohort study", Breast Cancer Research, 2018;20.
- B. Bejnordi, G. Litjens and J. van der Laak, "Machine Learning Compared With Pathologist Assessment-Reply", Journal of the American Medical Association, 2018;319(16):1726.
- F. Venhuizen, B. van Ginneken, B. Liefers, F. van Asten, V. Schreur, S. Fauser, C. Hoyng, T. Theelen and C. Sánchez, "A Deep Learning Approach for Detection and Quantification of Intraretinal Cystoid Fluid in Multivendor Optical Coherence Tomography", Biomedical Optics Express, 2018;9(4):1545-1569.
- J. Melendez, L. Hogeweg, C. Sánchez, R. Philipsen, R. Aldridge, A. Hayward, I. Abubakar, B. van Ginneken and A. Story, "Accuracy of an automated system for tuberculosis detection on chest radiographs in high-risk screening", International Journal of Tuberculosis and Lung Disease, 2018;22(5):567-571.
- O. Mets, K. Chung, P. Zanen, E. Scholten, W. Veldhuis, B. van Ginneken, M. Prokop, C. Schaefer-Prokop and P. de Jong, "In vivo growth of 60 non-screening detected lung cancers: a computed tomography study", European Respiratory Journal, 2018;51:1702183.
- J. van Zelst and R. Mann, "Automated Three-dimensional Breast US for Screening: Technique, Artifacts, and Lesion Characterization", Radiographics, 2018;38(3):663-683.
- A. Schreuder, C. Schaefer-Prokop, E. Scholten, C. Jacobs, M. Prokop and B. van Ginneken, "Lung cancer risk to personalise annual and biennial follow-up computed tomography screening", Thorax, 2018;73(7):626-633.
- M. Oei, F. Meijer, J. Mordang, E. Smit, A. Idema, B. Goraj, H. Laue, M. Prokop and R. Manniesing, "Observer Variability of Reference Tissue Selection for Relative Cerebral Blood Volume Measurements in Glioma Patients", European Radiology, 2018;28(9):3902-3911.
- M. Silva, C. Schaefer-Prokop, C. Jacobs, G. Capretti, F. Ciompi, B. van Ginneken, U. Pastorino and N. Sverzellati, "Detection of Subsolid Nodules in Lung Cancer Screening: Complementary Sensitivity of Visual Reading and Computer-Aided Diagnosis", Investigative Radiology, 2018;53(8):441-449.
- M. Meijs, F. de Leeuw, H. Boogaarts, R. Manniesing and F. Meijer, "Circle of Willis collateral flow in carotid artery occlusion is depicted by 4D-CTA", World Neurosurgery, 2018;114:421-426.
- G. Humpire Mamani, A. Setio, B. van Ginneken and C. Jacobs, "Efficient organ localization using multi-label convolutional neural networks in thorax-abdomen CT scans", Physics in Medicine and Biology, 2018;63(8):085003.
- J. Larkin, M. Simard, A. Khrapitchev, J. Meakin, T. Okell, M. Craig, K. Ray, P. Jezzard, M. Chappell and N. Sibson, "Quantitative blood flow measurement in rat brain with multiphase arterial spin labelling magnetic resonance imaging", Journal of Cerebral Blood Flow & Metabolism, 2018;39:1557-1569.
- M. Verhagen, A. Smets, J. van Schuppen, E. Deurloo and C. Schaefer-Prokop, "The impact of reconstruction techniques on observer performance for the detection and characterization of small pulmonary nodules in chest CT of children under 13 years", European Journal of Radiology, 2018;100:142-146.
- K. Chung, F. Ciompi, J. Scholten E. Th. Goo, M. Prokop, C. Jacobs, B. van Ginneken and C. Schaefer-Prokop, "Visual Discrimination of Screen-detected Persistent from Transient Subsolid Nodules: an Observer Study", PLoS One, 2018;13(2):e0191874.
- J. van Zelst, T. Tan, P. Clauser, A. Domingo, M. Dorrius, D. Drieling, M. Golatta, F. Gras, M. de Jong, R. Pijnappel, M. Rutten, N. Karssemeijer and R. Mann, "Dedicated computer-aided detection software for automated 3D breast ultrasound; an efficient tool for the radiologist in supplemental screening of women with dense breasts", European Radiology, 2018;28(7):2996-3006.
- N. Lessmann, B. van Ginneken, M. Zreik, P. de Jong, B. de Vos, M. Viergever and I. Išgum, "Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions", IEEE Transactions on Medical Imaging, 2018;37(2):615-625.
- S. Vreemann, A. Gubern-Merida, S. Lardenoije, P. Bult, N. Karssemeijer, K. Pinker and R. Mann, "The frequency of missed breast cancers in women participating in a high-risk MRI screening program", Breast Cancer Research and Treatment, 2018;169(2):323-331.
- S. Vreemann, A. Gubern-Mérida, C. Borelli, P. Bult, N. Karssemeijer and R. Mann, "The correlation of background parenchymal enhancement in the contralateral breast with patient and tumor characteristics of MRI-screen detected breast cancers", PLoS One, 2018;13(1):e0191399.
- M. Dalmis, S. Vreemann, T. Kooi, R. Mann, N. Karssemeijer and A. Gubern-Merida, "Fully automated detection of breast cancer in screening MRI using convolutional neural networks", Journal of Medical Imaging, 2018;5(1):014502.
- J. Charbonnier, K. Chung, E. Scholten, E. van Rikxoort, C. Jacobs, N. Sverzellati, M. Silva, U. Pastorino, B. van Ginneken and F. Ciompi, "Automatic segmentation of the solid core and enclosed vessels in subsolid pulmonary nodules", Scientific Reports, 2018;8(1):646.
- H. van der Holst, A. Tuladhar, V. Zerbi, I. van Uden, K. de Laat, E. van Leijsen, M. Ghafoorian, B. Platel, M. Bergkamp, A. van Norden and D. Norris, "White matter changes and gait decline in cerebral small vessel disease", NeuroImage: Clinical, 2018;17:731-738.
- A. Rodriguez-Ruiz, J. Teuwen, S. Vreemann, R. Bouwman, R. van Engen, N. Karssemeijer, R. Mann, A. Gubern-Merida and I. Sechopoulos, "New reconstruction algorithm for digital breast tomosynthesis: better image quality for humans and computers", Acta Radiologica, 2018;59(9):1051-1059.
- A. Rodriguez-Ruiz, A. Gubern-Merida, M. Imhof-Tas, S. Lardenoije, A. Wanders, I. Andersson, S. Zackrisson, K. Lang, M. Dustler, N. Karssemeijer, R. Mann and I. Sechopoulos, "One-view digital breast tomosynthesis as a stand-alone modality for breast cancer detection: do we need more?", European Radiology, 2018;28(5):1938-1948.
- C. Balta, R. Bouwman, I. Sechopoulos, M. Broeders, N. Karssemeijer, R. van Engen and W. Veldkamp, "A model observer study using acquired mammographic images of an anthropomorphic breast phantom", Medical Physics, 2018;45(2):655-665.
- J. Mordang, A. Gubern-Merida, A. Bria, F. Tortorella, R. Mann, M. Broeders, G. den Heeten and N. Karssemeijer, "The importance of early detection of calcifications associated with breast cancer in screening", Breast Cancer Research and Treatment, 2018;167(2):451-458.
- S. Vreemann, A. Gubern-Merida, M. Schlooz-Vries, P. Bult, C. van Gils, N. Hoogerbrugge, N. Karssemeijer and R. Mann, "Influence of Risk Category and Screening Round on the Performance of an MR Imaging and Mammography Screening Program in Carriers of the BRCA Mutation and Other Women at Increased Risk", Radiology, 2018;286(2):443-451.
- O. Mets, K. Chung, E. Scholten, W. Veldhuis, M. Prokop, B. van Ginneken, C. Schaefer-Prokop and P. de Jong, "Incidental perifissural nodules on routine chest computed tomography: lung cancer or not?", European Radiology, 2018:1095-1101.
- W. Venderink, M. de Rooij, M. Sedelaar, H. Huisman and J. Futterer, "Elastic versus rigid image registration in MRI-TRUS fusion prostate biopsy: a systematic review and meta-analysis", European Urology Focus, 2018;4:219-227.
- S. Gernaat, S. van Velzen, V. Koh, M. Emaus, I. Išgum, N. Lessmann, S. Moes, A. Jacobson, P. Tan, D. Grobbee, D. van den Bongard, J. Tang and H. Verkooijen, "Automatic quantification of calcifications in the coronary arteries and thoracic aorta on radiotherapy planning CT scans of Western and Asian breast cancer patients", Radiotherapy and Oncology, 2018;127:487-492.
- J. Sprem, B. de Vos, N. Lessmann, P. de Jong, M. Viergever and I. Isgum, "Impact of automatically detected motion artifacts on coronary calcium scoring in chest computed tomography", Journal of Medical Imaging, 2018;5:044007.
- J. Sprem, B. de Vos, N. Lessmann, R. van Hamersvelt, M. Greuter, P. de Jong, T. Leiner, M. Viergever and I. Isgum, "Coronary calcium scoring with partial volume correction in anthropomorphic thorax phantom and screening chest CT images", PLoS One, 2018;13:e0209318.
- M. Zreik, N. Lessmann, R. van Hamersvelt, J. Wolterink, M. Voskuil, M. Viergever, T. Leiner and I. Išgum, "Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis", Medical Image Analysis, 2018;44:72-85.
- B. Bejnordi, G. Zuidhof, M. Balkenhol, M. Hermsen, P. Bult, B. van Ginneken, N. Karssemeijer, G. Litjens and J. van der Laak, "Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images", Journal of Medical Imaging, 2017;4(4):044504.
- B. Ehteshami Bejnordi, M. Veta, P. van Diest, B. van Ginneken, N. Karssemeijer, G. Litjens, J. van der Laak, T. Consortium, M. Hermsen, Q. Manson, M. Balkenhol, O. Geessink, N. Stathonikos, M. van Dijk, P. Bult, F. Beca, A. Beck, D. Wang, A. Khosla, R. Gargeya, H. Irshad, A. Zhong, Q. Dou, Q. Li, H. Chen, H. Lin, P. Heng, C. Haß, E. Bruni, Q. Wong, U. Halici, M. Öner, R. Cetin-Atalay, M. Berseth, V. Khvatkov, A. Vylegzhanin, O. Kraus, M. Shaban, N. Rajpoot, R. Awan, K. Sirinukunwattana, T. Qaiser, Y. Tsang, D. Tellez, J. Annuscheit, P. Hufnagl, M. Valkonen, K. Kartasalo, L. Latonen, P. Ruusuvuori, K. Liimatainen, S. Albarqouni, B. Mungal, A. George, S. Demirci, N. Navab, S. Watanabe, S. Seno, Y. Takenaka, H. Matsuda, H. Ahmady Phoulady, V. Kovalev, A. Kalinovsky, V. Liauchuk, G. Bueno, M. Fernandez-Carrobles, I. Serrano, O. Deniz, D. Racoceanu and R. Venâncio, "Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer", Journal of the American Medical Association, 2017;318(22):2199-2210.
- L. Gallardo-Estrella, E. Pompe, P. de Jong, C. Jacobs, E. van Rikxoort, M. Prokop, C. Sánchez and B. van Ginneken, "Normalized emphysema scores on low dose CT: Validation as an imaging biomarker for mortality", PLoS One, 2017;12(12):e0188902.
- B. Liefers, F. Venhuizen, V. Schreur, B. van Ginneken, C. Hoyng, S. Fauser, T. Theelen and C. Sánchez, "Automatic detection of the foveal center in optical coherence tomography", Biomedical Optics Express, 2017;8(11):5160-5178.
- K. Holland, I. Sechopoulos, R. Mann, G. den Heeten, C. van Gils and N. Karssemeijer, "Influence of breast compression pressure on the performance of population-based mammography screening", Breast Cancer Research, 2017;19(1):126.
- M. Meijs, A. Patel, S. van de Leemput, M. Prokop, E. van Dijk, F. de Leeuw, F. Meijer, B. van Ginneken and R. Manniesing, "Robust Segmentation of the Full Cerebral Vasculature in 4D CT Images of Suspected Stroke Patients", Scientific Reports, 2017;7.
- S. van Riel, F. Ciompi, M. Winkler Wille, A. Dirksen, S. Lam, E. Scholten, S. Rossi, N. Sverzellati, M. Naqibullah, R. Wittenberg, M. Hovinga-de Boer, M. Snoeren, L. Peters-Bax, O. Mets, M. Brink, M. Prokop, C. Schaefer-Prokop and B. van Ginneken, "Malignancy risk estimation of pulmonary nodules in screening CTs: Comparison between a computer model and human observers", PLoS One, 2017;12(11):e0185032.
- T. Kooi and N. Karssemeijer, "Classifying symmetrical differences and temporal change for the detection of malignant masses in mammography using deep neural networks", Journal of Medical Imaging, 2017;4(4):International Society for Optics and Photonics.
- E. Gray, A. Donten, N. Karssemeijer, C. van Gils, D. Evans, S. Astley and K. Payne, "Evaluation of a Stratified National Breast Screening Program in the United Kingdom: An Early Model-Based Cost-Effectiveness Analysis", Value in Health, 2017;20:1100-1109.
- F. Ciompi, K. Chung, S. van Riel, A. Setio, P. Gerke, C. Jacobs, E. Scholten, C. Schaefer-Prokop, M. Wille, A. Marchiano, U. Pastorino, M. Prokop and B. van Ginneken, "Towards automatic pulmonary nodule management in lung cancer screening with deep learning", Scientific Reports, 2017(46479).
- E. van Leijsen, I. van Uden, M. Ghafoorian, M. Bergkamp, V. Lohner, E. Kooijmans, H. van der Holst, A. Tuladhar, D. Norris, E. van Dijk, L. Rutten-Jacobs, B. Platel, C. Klijn and F. de Leeuw, "Nonlinear temporal dynamics of cerebral small vessel disease The RUN DMC study", Neurology, 2017;89(15):1569-1577.
- W. Venderink, M. van der Leest, A. van Luijtelaar, W. van de Ven, J. Futterer, J. Sedelaar and H. Huisman, "Retrospective comparison of direct in-bore magnetic resonance imaging (MRI) guided biopsy and fusion guided biopsy in patients with MRI lesions which are likely or highly likely to be clinically significant prostate cancer", World Journal of Urology, 2017;35(12):1849-1855.
- A. Devaraj, B. van Ginneken, A. Nair and D. Baldwin, "Use of Volumetry for Lung Nodule Management: Theory and Practice", Radiology, 2017;284(3):630-644.
- J. Melendez, R. Philipsen, P. Chanda-Kapata, V. Sunkutu, N. Kapata and B. van Ginneken, "Automatic versus human reading of chest X-rays in the Zambia National Tuberculosis Prevalence Survey", International Journal of Tuberculosis and Lung Disease, 2017;21(8):880-886.
- G. Litjens, T. Kooi, B. Ehteshami Bejnordi, A. Setio, F. Ciompi, M. Ghafoorian, J. van der Laak, B. van Ginneken and C. Sánchez, "A Survey on Deep Learning in Medical Image Analysis", Medical Image Analysis, 2017;42:60-88.
- E. Gibson, Y. Hu, H. Huisman and D. Barratt, "Designing image segmentation studies: statistical power, sample size and reference standard quality", Medical Image Analysis, 2017;42:44-59.
- A. Setio, A. Traverso, T. de Bel, M. Berens, C. Bogaard, P. Cerello, H. Chen, Q. Dou, M. Fantacci, B. Geurts, R. Gugten, P. Heng, B. Jansen, M. de Kaste, V. Kotov, J. Lin, J. Manders, A. Sonora-Mengana, J. Garcia-Naranjo, E. Papavasileiou, M. Prokop, M. Saletta, C. Schaefer-Prokop, E. Scholten, L. Scholten, M. Snoeren, E. Torres, J. Vandemeulebroucke, N. Walasek, G. Zuidhof, B. Ginneken and C. Jacobs, "Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge", Medical Image Analysis, 2017;42:1-13.
- F. Venhuizen, B. van Ginneken, B. Liefers, Schreur, M. van Grinsven, S. Fauser, C. Hoyng, T. Theelen and C. Sánchez, "Robust Total Retina Thickness Segmentation in Optical Coherence Tomography Images using Convolutional Neural Networks", Biomedical Optics Express, 2017;8(7):3292-3316.
- T. van den Heuvel, D. Graham, K. Smith, C. de Korte and J. Neasham, "Development of a Low-Cost Medical Ultrasound Scanner Using a Monostatic Synthetic Aperture", IEEE Transactions on Biomedical Circuits and Systems, 2017;11(4):849-857.
- M. Ghafoorian, N. Karssemeijer, T. Heskes, I. van Uden, C. Sánchez, G. Litjens, F. de Leeuw, B. van Ginneken, E. Marchiori and B. Platel, "Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities", Scientific Reports, 2017;7(1):5110.
- A. Bankier, H. MacMahon, J. Goo, G. Rubin, C. Schaefer-Prokop and D. Naidich, "Recommendations for Measuring Pulmonary Nodules at CT: A Statement from the Fleischner Society", Radiology, 2017;285:584-600.
- J. Milenković, M. Dalmış, J. Zgajnar and B. Platel, "Textural analysis of early-phase spatiotemporal changes in contrast enhancement of breast lesions imaged with an ultrafast
DCE -MRI protocol", Medical Physics, 2017;44:4652-4664. - J. van Zelst, R. Mus, G. Woldringh, M. Rutten, P. Bult, S. Vreemann, M. de Jong, N. Karssemeijer, N. Hoogerbrugge and R. Mann, "Surveillance of Women with the BRCA1 or BRCA2 Mutation by Using Biannual Automated Breast US, MR Imaging, and Mammography", Radiology, 2017;285(2):376-388.
- J. Wanders, K. Holland, N. Karssemeijer, P. Peeters, W. Veldhuis, R. Mann and C. van Gils, "The effect of volumetric breast density on the risk of screen-detected and interval breast cancers: a cohort study", Breast Cancer Research, 2017;19(1):67.
- J. van Zelst, M. Balkenhol, T. Tan, M. Rutten, M. Imhof-Tas, P. Bult, N. Karssemeijer and R. Mann, "Sonographic Phenotypes of Molecular Subtypes of Invasive Ductal Cancer in Automated 3-D Breast Ultrasound", Ultrasound in Medicine and Biology, 2017;43(9):1820-1828.
- B. Lassen-Schmidt, J. Kuhnigk, O. Konrad, B. van Ginneken and E. van Rikxoort, "Fast interactive segmentation of the pulmonary lobes from thoracic computed tomography data", Physics in Medicine and Biology, 2017;62(16):6649-6665.
- A. Castells-Nobau, B. Nijhof, I. Eidhof, L. Wolf, J. Scheffer-de Gooyert, I. Monedero, L. Torroja, J. van der Laak and A. Schenck, "Two Algorithms for High-throughput and Multi-parametric Quantification of Drosophila Neuromuscular Junction Morphology", JoVE, 2017;123(e55395):1-13.
- S. Vreemann, A. Rodriguez-Ruiz, D. Nickel, L. Heacock, L. Appelman, J. van Zelst, N. Karssemeijer, E. Weiland, M. Maas, L. Moy, B. Kiefer and R. Mann, "Compressed Sensing for Breast MRI: Resolving the Trade-Off Between Spatial and Temporal Resolution", Investigative Radiology, 2017;52(10):574-582.
- K. Chung, C. Jacobs, E. Scholten, O. Mets, I. Dekker, M. Prokop, B. van Ginneken and C. Schaefer-Prokop, "Malignancy estimation of Lung-RADS criteria for subsolid nodules on CT: accuracy of low and high risk spectrum when using NLST nodules", European Radiology, 2017;27:4672-4679.
- F. Venhuizen, B. van Ginneken, F. van Asten, M. van Grinsven, S. Fauser, C. Hoyng, T. Theelen and C. Sánchez, "Automated Staging of Age-Related Macular Degeneration Using Optical Coherence Tomography", Investigative Ophthalmology and Visual Science, 2017;58(4):2318-2328.
- E. Pompe, P. de Jong, D. Lynch, N. Lessmann, I. Išgum, B. van Ginneken, J. Lammers and F. Mohamed Hoesein, "Computed tomographic findings in subjects who died from respiratory disease in the National Lung Screening Trial", European Respiratory Journal, 2017;49(4):1601814.
- L. Gallardo Estrella, E. Pompe, J. Kuhnigk, D. Lynch, S. Bhatt, B. van Ginneken and E. van Rikxoort, "Computed tomography quantification of tracheal abnormalities in COPD and their influence on airflow limitation", Medical Physics, 2017;44(7):3594-3603.
- U. Yousaf-Khan, C. van der Aalst, P. de Jong, M. Heuvelmans, E. Scholten, J. Walter, K. Nackaerts, H. Groen, R. Vliegenthart, K. Ten Haaf, M. Oudkerk and H. de Koning, "Risk stratification based on screening history: the NELSON lung cancer screening study", Thorax, 2017;72(9):819-824.
- K. Chung, C. Jacobs, E. Scholten, J. Goo, H. Prosch, N. Sverzellati, F. Ciompi, O. Mets, P. Gerke, M. Prokop, B. van Ginneken and C. Schaefer-Prokop, "Lung-RADS Category 4X: Does It Improve Prediction of Malignancy in Subsolid Nodules?", Radiology, 2017;284(1):264-271.
- Y. Suzuki, N. Fujima, T. Ogino, J. Meakin, A. Suwa, H. Sugimori, M. Van Cauteren and M. van Osch, "Acceleration of ASL-based time-resolved MR angiography by acquisition of control and labeled images in the same shot (ACTRESS)", Magnetic Resonance in Medicine, 2017;79:224-233.
- S. van Riel, F. Ciompi, C. Jacobs, M. Winkler Wille, E. Scholten, M. Naqibullah, S. Lam, M. Prokop, C. Schaefer-Prokop and B. van Ginneken, "Malignancy risk estimation of screen-detected nodules at baseline CT: comparison of the PanCan model, Lung-RADS and NCCN guidelines", European Radiology, 2017;27(10):4019-4029.
- R. Manniesing, M. Oei, L. Oostveen, J. Melendez, E. Smit, B. Platel, C. Sánchez, F. Meijer, M. Prokop and B. van Ginneken, "White Matter and Gray Matter Segmentation in 4D Computed Tomography", Scientific Reports, 2017;7(119).
- M. Ghafoorian, N. Karssemeijer, T. Heskes, M. Bergkamp, J. Wissink, J. Obels, K. Keizer, F. de Leeuw, B. Ginneken, E. Marchiori and B. Platel, "Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin", NeuroImage: Clinical, 2017;14:391-399.
- R. Mus, C. Borelli, P. Bult, E. Weiland, N. Karssemeijer, J. Barentsz, A. Gubern-Mérida, B. Platel and R. Mann, "Time to enhancement derived from ultrafast breast MRI as a novel parameter to discriminate benign from malignant breast lesions", European Journal of Radiology, 2017;89:90-96.
- J. van Zelst, T. Tan, B. Platel, M. de Jong, A. Steenbakkers, M. Mourits, A. Grivegnee, C. Borelli, N. Karssemeijer and R. Mann, "Improved cancer detection in automated breast ultrasound by radiologists using Computer Aided Detection", European Journal of Radiology, 2017;89:54-59.
- K. Holland, A. Gubern-Mérida, R. Mann and N. Karssemeijer, "Optimization of volumetric breast density estimation in digital mammograms", Physics in Medicine and Biology, 2017;62(9):3779-3797.
- B. van Ginneken, "Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning", Radiological Physics and Technology, 2017;10(1):23-32.
- J. Mordang, A. Gubern-Merida, A. Bria, F. Tortorella, G. den Heeten and N. Karssemeijer, "Improving computer-aided detection assistance in breast cancer screening by removal of obviously false-positive findings", Medical Physics, 2017;44(4):1390-1401.
- K. Holland, C. van Gils, R. Mann and N. Karssemeijer, "Quantification of masking risk in screening mammography with volumetric breast density maps", Breast Cancer Research and Treatment, 2017;162(3):541-548.
- S. Laban, G. Giebel, N. Klümper, A. Schröck, J. Doescher, G. Spagnoli, J. Thierauf, M. Theodoraki, R. Remark, S. Gnjatic, R. Krupar, A. Sikora, G. Litjens, N. Grabe, G. Kristiansen, F. Bootz, P. Schuler, C. Brunner, J. Brägelmann, T. Hoffmann and S. Perner, "MAGE expression in head and neck squamous cell carcinoma primary tumors, lymph node metastases and respective recurrences: implications for immunotherapy", Oncotarget, 2017;8:14719-14735.
- L. Hogeweg, C. Sánchez, P. Maduskar, R. Philipsen and B. van Ginneken, "Fast and effective quantification of symmetry in medical images for pathology detection: application to chest radiography", Medical Physics, 2017;44(6):2242-2256.
- S. Steens, E. Bekers, W. Weijs, G. Litjens, A. Veltien, A. Maat, G. van den Broek, J. van der Laak, J. Futterer, C. van der Kaa, M. Merkx and R. Takes, "Evaluation of tongue squamous cell carcinoma resection margins using ex-vivo MR.", International Journal of Computer Assisted Radiology and Surgery, 2017;12(5):821-828.
- T. Kooi, B. van Ginneken, N. Karssemeijer and A. den Heeten, "Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network", Medical Physics, 2017;44(3):1017-1027.
- T. Mertzanidou, J. Hipwell, S. Reis, D. Hawkes, B. Bejnordi, M. Dalmis, S. Vreemann, B. Platel, J. van der Laak, N. Karssemeijer, M. Hermsen, P. Bult and R. Mann, "3D volume reconstruction from serial breast specimen radiographs for mapping between histology and 3D whole specimen imaging", Medical Physics, 2017;44(3):935-948.
- G. Bozovic, C. Adlercreutz, P. Höglund, I. Björkman-Burtscher, P. Reinstrup, R. Ingemansson, C. Schaefer-Prokop, R. Siemund and M. Geijer, "Imaging of the Lungs in Organ Donors and its Clinical Relevance", Journal of Thoracic Imaging, 2017;32:107-114.
- J. Cohen, H. Kim, S. Park, B. van Ginneken, G. Ferretti, C. Lee, J. Goo and C. Park, "Comparison of the effects of model-based iterative reconstruction and filtered back projection algorithms on software measurements in pulmonary subsolid nodules", European Radiology, 2017;27:3266-3274.
- M. Dalmis, G. Litjens, K. Holland, A. Setio, R. Mann, N. Karssemeijer and A. Gubern-Mérida, "Using deep learning to segment breast and fibroglandular tissue in MRI volumes", Medical Physics, 2017;44(2):533-546.
- J. Wanders, K. Holland, W. Veldhuis, R. Mann, R. Pijnappel, P. Peeters, C. van Gils and N. Karssemeijer, "Volumetric breast density affects performance of digital screening mammography", Breast Cancer Research and Treatment, 2017;162(1):95-103.
- A. Patel, B. van Ginneken, F. Meijer, E. van Dijk, M. Prokop and R. Manniesing, "Robust Cranial Cavity Segmentation in CT and CT Perfusion Images of Trauma and Suspected Stroke Patients", Medical Image Analysis, 2017;36:216-228.
- L. Stöger, C. Schaefer-Prokop and B. Geurts, "Imaging of nontraumatic thoracic emergencies", Current Opinion in Pulmonary Medicine, 2017;23:184-192.
- J. Charbonnier, E. van Rikxoort, A. Setio, C. Schaefer-Prokop, B. van Ginneken and F. Ciompi, "Improving Airway Segmentation in Computed Tomography using Leak Detection with Convolutional Networks", Medical Image Analysis, 2017;36:52-60.
- M. Oei, F. Meijer, W. van der Woude, E. Smit, B. van Ginneken, M. Prokop and R. Manniesing, "Interleaving cerebral CT perfusion with neck CT angiography part I. Proof of concept and accuracy of cerebral perfusion values", European Radiology, 2017;27(6):2649-2656.
- M. Oei, F. Meijer, W. van der Woude, E. Smit, B. van Ginneken, R. Manniesing and M. Prokop, "Interleaving cerebral CT perfusion with neck CT angiography. Part II: clinical implementation and image quality", European Radiology, 2017;27(6):2411-2418.
- T. Kooi, G. Litjens, B. van Ginneken, A. Gubern-Mérida, C. Sánchez, R. Mann, A. den Heeten and N. Karssemeijer, "Large scale deep learning for computer aided detection of mammographic lesions", Medical Image Analysis, 2017;35:303-312.
- O. Mets, P. de Jong, E. Scholten, K. Chung, B. van Ginneken and C. Schaefer-Prokop, "Subsolid pulmonary nodule morphology and associated patient characteristics in a routine clinical population", European Radiology, 2017;27(2):689-696.
- N. Moriakov, "On Effective Birkhoff's Ergodic Theorem for Computable Actions of Amenable Groups", Theory of Computing Systems, 2017.
- W. Mesker, G. van Pelt, A. Huijbers, J. van der Laak, E. Dequeker, J. Fléjou, R. Al Dieri, D. Kerr, J. Van Krieken and R. Tollenaar, "Improving treatment decisions in colon cancer: The tumor-stroma ratio (TSR) additional to the TNM classification", Annals of Oncology, 2017;28:v190-v191.
- H. Hare, R. Frost, J. Meakin and D. Bulte, "On the Origins of the Cerebral IVIM Signal", Preprint, 2017.
- R. Remark, T. Merghoub, N. Grabe, G. Litjens, D. Damotte, J. Wolchok, M. Merad and S. Gnjatic, "In-depth tissue profiling using multiplexed immunohistochemical consecutive staining on single slide", Science Immunology, 2016;1(1):aaf6925-aaf6925.
- R. Manniesing, C. Brune, B. van Ginneken and M. Prokop, "A 4D CT Digital Phantom of an Individual Human Brain for Perfusion Analysis", PeerJ, 2016;4:e2683.
- M. Ghafoorian, N. Karssemeijer, I. van Uden, F. de Leeuw, T. Heskes, E. Marchiori and B. Platel, "Automated Detection of White Matter Hyperintensities of All Sizes in Cerebral Small Vessel Disease", Medical Physics, 2016;43(12):6246-6258.
- E. Lens, A. Kotte, A. Patel, H. Heerkens, M. Bal, G. van Tienhoven, A. Bel, A. van der Horst and G. Meijer, "Probabilistic treatment planning for pancreatic cancer treatment: prospective incorporation of respiratory motion shows only limited dosimetric benefit", Acta Oncologica, 2016:1-7.
- F. Ciompi, S. Balocco, J. Rigla, X. Carrillo, J. Mauri and P. Radeva, "Computer-aided detection of intracoronary stent in intravascular ultrasound sequences", Medical Physics, 2016;43(10):5616.
- O. Debats, A. Fortuin, H. Meijer, T. Hambrock, G. Litjens, J. Barentsz and H. Huisman, "Intranodal signal suppression in pelvic MR lymphography of prostate cancer patients: a quantitative comparison of ferumoxtran-10 and ferumoxytol", PeerJ, 2016;4:e2471.
- M. Pompe, E. van Rikxoort, O. Mets, J. Charbonnier, J. Kuhnigk, H. de Koning, M. Oudkerk, R. Vliegenthart, P. Zanen, J. Lammers, B. van Ginneken, P. de Jong and F. Mohamed Hoesein, "Follow-up of CT-derived airway wall thickness: Correcting for changes in inspiration level improves reliability", European Journal of Radiology, 2016;85(11):2008-2013.
- T. Koster, E. van Rikxoort, R. Huebner, F. Doellinger, K. Klooster, J. Charbonnier, S. Radhakrishnan, F. Herth and D. Slebos, "Predicting Lung Volume Reduction after Endobronchial Valve Therapy Is Maximized Using a Combination of Diagnostic Tools", Respiration, 2016;92(3):150-7.
- R. Arntz, S. van den Broek, I. van Uden, M. Ghafoorian, B. Platel, L. Rutten-Jacobs, N. Maaijwee, P. Schaapsmeerders, H. Schoonderwaldt, E. van Dijk and F. de Leeuw, "Accelerated development of cerebral small vessel disease in young stroke patients", Neurology, 2016.
- T. van den Heuvel, A. van der Eerden, R. Manniesing, M. Ghafoorian, T. Tan, T. Andriessen, T. Vyvere, L. van den Hauwe, B. ter Romeny, B. Goraj and B. Platel, "Automated detection of cerebral microbleeds in patients with Traumatic Brain Injury", NeuroImage: Clinical, 2016;12:241 - 251.
- T. Kockelkorn, P. de Jong, C. Schaefer-Prokop, R. Wittenberg, A. Tiehuis, H. Gietema, J. Grutters, M. Viergever and B. van Ginneken, "Semi-automatic classification of textures in thoracic CT scans", Physics in Medicine and Biology, 2016;61(16):5906-5924.
- K. Holland, J. van Zelst, G. den Heeten, M. Imhof-Tas, R. Mann, C. van Gils and N. Karssemeijer, "Consistency of breast density categories in serial screening mammograms: A comparison between automated and human assessment", Breast, 2016;29:49-54.
- T. Tan, A. Gubern-Mérida, C. Borelli, R. Manniesing, J. van Zelst, L. Wang, W. Zhang, B. Platel, R. Mann and N. Karssemeijer, "Segmentation of malignant lesions in 3D breast ultrasound using a depth-dependent model", Medical Physics, 2016;43(7):4074-4084.
- E. Pompe, P. de Jong, E. van Rikxoort, L. Gallardo Estrella, W. de Jong, R. Vliegenthart, M. Oudkerk, C. van der Aalst, B. van Ginneken, J. Lammers and F. Mohamed Hoesein, "Smokers with emphysema and small airway disease on computed tomography have lower bone density", International Journal of Chronic Obstructive Pulmonary Disease, 2016;11:1207-1216.
- O. Debats, M. Meijs, G. Litjens and H. Huisman, "Automated multistructure atlas-assisted detection of lymph nodes using pelvic MR lymphography in prostate cancer patients", Medical Physics, 2016;43(6):3132.
- C. de Korte, S. Fekkes, A. Nederveen, R. Manniesing and H. Hansen, "Review: Mechanical Characterization of Carotid Arteries and Atherosclerotic Plaques", IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2016;63(10):1613-1623.
- M. van Grinsven, T. Theelen, L. Witkamp, J. van der Heijden, J. van de Ven, C. Hoyng, B. van Ginneken and C. Sánchez, "Automatic differentiation of color fundus images containing drusen or exudates using a contextual spatial pyramid approach", Biomedical Optics Express, 2016;7(3):709-725.
- G. Litjens, C. Sánchez, N. Timofeeva, M. Hermsen, I. Nagtegaal, I. Kovacs, C. Hulsbergen-van de Kaa, P. Bult, B. van Ginneken and J. van der Laak, "Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis", Scientific Reports, 2016;6:26286.
- J. Cohen, J. Goo, R. Yoo, S. Park, B. van Ginneken, G. Ferretti, C. Lee and C. Park, "The effect of late-phase contrast enhancement on semi-automatic software measurements of CT attenuation and volume of part-solid nodules in lung adenocarcinomas", European Journal of Radiology, 2016;85(6):1174-1180.
- J. Schwaab, Y. Diez, A. Oliver, R. Marti, J. van Zelst, A. Gubern-Merida, A. Mourri, J. Gregori and M. Gunther, "Automated quality assessment in three-dimensional breast ultrasound images", Journal of Medical Imaging, 2016;3(2):027002.
- J. Melendez, C. Sánchez, R. Philipsen, P. Maduskar, R. Dawson, G. Theron, K. Dheda and B. van Ginneken, "An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information", Scientific Reports, 2016;6:25265.
- J. Hoffman, M. van Grinsven, C. Li, M. Brantley Jr, J. McGrath, A. Agarwal, W. Scott, S. Schwartz, J. Kovach, M. Pericak-Vance, C. Sánchez and J. Haines, "Genetic Association Analysis of Drusen Progression", Investigative Ophthalmology and Visual Science, 2016;57(4):2225-2231.
- B. Bejnordi, M. Balkenhol, G. Litjens, R. Holland, P. Bult, N. Karssemeijer and J. van der Laak, "Automated Detection of DCIS in Whole-Slide H&E Stained Breast Histopathology Images", IEEE Transactions on Medical Imaging, 2016;35(9):2141-2150.
- W. van de Ven, W. Venderink, J. Sedelaar, J. Veltman, J. Barentsz, J. Fütterer, E. Cornel and H. Huisman, "MR-targeted TRUS prostate biopsy using local reference augmentation: initial experience", International Urology and Nephrology, 2016.
- J. Cohen, J. Goo, R. Yoo, C. Park, C. Lee, B. van Ginneken, D. Chung and Y. Kim, "Software performance in segmenting ground-glass and solid components of subsolid nodules in pulmonary adenocarcinomas", European Radiology, 2016;26(12):4465-4474.
- J. Mordang, A. Gubern-Mérida, G. den Heeten and N. Karssemeijer, "Reducing false positives of microcalcification detection systems by removal of breast arterial calcifications", Medical Physics, 2016;43(4):1676-1687.
- B. Nijhof, A. Castells-Nobau, L. Wolf, J. Scheffer-de Gooyert, I. Monedero, L. Torroja, L. Coromina, J. van der Laak and A. Schenck, "A New Fiji-Based Algorithm That Systematically Quantifies Nine Synaptic Parameters Provides Insights into Drosophila NMJ Morphometry", PLOS Computational Biology, 2016;12:e1004823.
- A. Ritchie, C. Sanghera, C. Jacobs, W. Zhang, J. Mayo, H. Schmidt, M. Gingras, S. Pasian, L. Stewart, S. Tsai, D. Manos, J. Seely, P. Burrowes, R. Bhatia, S. Atkar-Khattra, B. van Ginneken, M. Tammemagi, M. Tsao, S. Lam and the Pan-Canadian Early Detection of Lung Cancer Study Group, "Computer Vision Tool and Technician as First Reader of Lung Cancer Screening CT Scans", Journal of Thoracic Oncology, 2016;11(5):709-717.
- A. Setio, F. Ciompi, G. Litjens, P. Gerke, C. Jacobs, S. van Riel, M. Wille, M. Naqibullah, C. Sánchez and B. van Ginneken, "Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks", IEEE Transactions on Medical Imaging, 2016;35(5):1160-1169.
- O. Mets, P. de Jong, K. Chung, J. Lammers, B. van Ginneken and C. Schaefer-Prokop, "Fleischner recommendations for the management of subsolid pulmonary nodules: high awareness but limited conformance - a survey study", European Radiology, 2016;26:3840-3849.
- M. Kallenberg, K. Petersen, M. Nielsen, A. Ng, P. Diao, C. Igel, C. Vachon, K. Holland, N. Karssemeijer and M. Lillholm, "Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring", IEEE Transactions on Medical Imaging, 2016;35:1322-1331.
- M. van Grinsven, B. van Ginneken, C. Hoyng, T. Theelen and C. Sánchez., "Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images", IEEE Transactions on Medical Imaging, 2016;35(5):1273-1284.
- S. Schalekamp, N. Karssemeijer, A. Cats, B. De Hoop, B. Geurts, O. Berger-Hartog, B. van Ginneken and C. Schaefer-Prokop, "The Effect of Supplementary Bone-Suppressed Chest Radiographs on the Assessment of a Variety of Common Pulmonary Abnormalities: Results of an Observer Study", Journal of Thoracic Imaging, 2016;31(2):119-125.
- A. Gubern-Mérida, S. Vreemann, R. Marti, J. Melendez, S. Lardenoije, R. Mann, N. Karssemeijer and B. Platel, "Automated detection of breast cancer in false-negative screening MRI studies from women at increased risk", European Journal of Radiology, 2016;85(2):472-479.
- M. Dalmis, A. Gubern-Mérida, S. Vreemann, N. Karssemeijer, R. Mann and B. Platel, "A Computer-Aided Diagnosis System for Breast DCE-MRI at High Spatiotemporal Resolution", Medical Physics, 2016;43(1):84-94.
- P. Maduskar, R. Philipsen, J. Melendez, E. Scholten, D. Chanda, H. Ayles, C. Sánchez and B. van Ginneken, "Automatic detection of pleural effusion in chest radiographs", Medical Image Analysis, 2016;28:22-32.
- J. Melendez, B. van Ginneken, P. Maduskar, R. Philipsen, H. Ayles and C. Sánchez, "On Combining Multiple-Instance Learning and Active Learning for Computer-Aided Detection of Tuberculosis", IEEE Transactions on Medical Imaging, 2016;35(4):1013-1024.
- J. Charbonnier, M. Brink, F. Ciompi, E. Scholten, C. Schaefer-Prokop and E. van Rikxoort, "Automatic Pulmonary Artery-Vein Separation and Classification in Computed Tomography Using Tree Partitioning and Peripheral Vessel Matching", IEEE Transactions on Medical Imaging, 2016:882-892.
- M. Meijs, S. Christensen, M. Lansberg, G. Albers and F. Calamante, "Analysis of perfusion MRI in stroke: To deconvolve, or not to deconvolve", Magnetic Resonance in Medicine, 2016;76:1282-1290.
- C. Ridge, A. Yildirim, P. Boiselle, T. Franquet, C. Schaefer-Prokop, D. Tack, P. Gevenois and A. Bankier, "Differentiating between Subsolid and Solid Pulmonary Nodules at CT: Inter- and Intraobserver Agreement between Experienced Thoracic Radiologists", Radiology, 2016:888-96.
- C. Jacobs, E. van Rikxoort, K. Murphy, M. Prokop, C. Schaefer-Prokop and B. van Ginneken, "Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database", European Radiology, 2016;26:2139-2147.
- T. Kobus, J. van der Laak, M. Maas, T. Hambrock, C. Bruggink, C. Hulsbergen-van de Kaa, T. Scheenen and A. Heerschap, "Contribution of Histopathologic Tissue Composition to Quantitative MR Spectroscopy and Diffusion-weighted Imaging of the Prostate", Radiology, 2016;278(3):801-811.
- B. Bejnordi, G. Litjens, N. Timofeeva, I. Otte-Holler, A. Homeyer, N. Karssemeijer and J. van der Laak, "Stain specific standardization of whole-slide histopathological images", IEEE Transactions on Medical Imaging, 2016;35(2):404-415.
- G. Bozovic, S. Steen, T. Sjöberg, C. Schaefer-Prokop, J. Verschakelen, Q. Liao, P. Höglund, R. Siemund and I. Björkman-Burtscher, "Circulation stabilizing therapy and pulmonary high-resolution computed tomography in a porcine brain-dead model", Acta Anaesthesiologica Scandinavica, 2016;60:93-102.
- G. Litjens, R. Elliott, N. Shih, M. Feldman, T. Kobus, C. Hulsbergen-van de Kaa, J. Barentsz, H. Huisman and A. Madabhushi, "Computer-extracted Features Can Distinguish Noncancerous Confounding Disease from Prostatic Adenocarcinoma at Multiparametric MR Imaging.", Radiology, 2016;278(1):135-145.
- R. Manniesing, M. Oei, B. van Ginneken and M. Prokop, "Quantitative Dose Dependency Analysis of Whole-Brain CT Perfusion Imaging", Radiology, 2016;278(1):190-197.
- L. Gallardo-Estrella, D. Lynch, M. Prokop, D. Stinson, J. Zach, P. Judy, B. van Ginneken and E. van Rikxoort, "Normalizing computed tomography data reconstructed with different filter kernels: effect on emphysema quantification", European Radiology, 2016;26:478-486.
- W. van de Ven, J. Sedelaar, M. van der Leest, C. de Hulsbergen-van Kaa, J. Barentsz, J. Futterer and H. Huisman, "Visibility of prostate cancer on transrectal ultrasound during fusion with multi-parametric magnetic resonance imaging for biopsy", Clinical Imaging, 2016;40(4):745-750.
- H. Greenspan, R. Summers and B. van Ginneken, "Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique", IEEE Transactions on Medical Imaging, 2016;35(5):1153-1159.
- T. Kockelkorn, R. Ramos, J. Ramos, P. de Jong, C. Schaefer-Prokop, R. Wittenberg, A. Tiehuis, J. Grutters, M. Viergever and B. van Ginneken, "Optimization Strategies for Interactive Classification of Interstitial Lung Disease Textures", Frontiers in ICT, 2016;3:33.
- J. Teuwen, "On the integral kernels of derivatives of the Ornstein-Uhlenbeck semigroup", Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2016;19(04):1650030.
- A. Steiner, C. Mangu, J. van den Hombergh, H. van Deutekom, B. van Ginneken, P. Clowes, F. Mhimbira, S. Mfinanga, A. Rachow, K. Reither and M. Hoelscher, "Screening for pulmonary tuberculosis in a Tanzanian prison and computer-aided interpretation of chest X-rays", Public Health Action, 2015;5(4):249-254.
- K. Klooster, N. ten Hacken, J. Hartman, H. Kerstjens, E. van Rikxoort and D. Slebos, "Endobronchial Valves for Emphysema without Interlobar Collateral Ventilation", New England Journal of Medicine, 2015;373(24):2325-2335.
- F. Ciompi, B. de Hoop, S. van Riel, K. Chung, E. Scholten, M. Oudkerk, P. de Jong, M. Prokop and B. van Ginneken, "Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box", Medical Image Analysis, 2015;26(1):195-202.
- H. van der Holst, I. van Uden, A. Tuladhar, K. de Laat, A. van Norden, D. Norris, E. van Dijk, R. Esselink, B. Platel and F. de Leeuw, "Cerebral small vessel disease and incident parkinsonism: The RUN DMC study", Neurology, 2015;85(18):1569-1577.
- O. Solyanik, P. Hollmann, S. Dettmer, T. Kaireit, C. Schaefer-Prokop, F. Wacker, J. Vogel-Claussen and H. Shin, "Quantification of Pathologic Air Trapping in Lung Transplant Patients Using CT Density Mapping: Comparison with Other CT Air Trapping Measures", PLoS One, 2015;10(10):e0139102.
- A. Setio, C. Jacobs, J. Gelderblom and B. van Ginneken, "Automatic detection of large pulmonary solid nodules in thoracic CT images", Medical Physics, 2015;42(10):5642-5653.
- D. Slebos, E. van Rikxoort and W. van der Bij, "Air Trapping in Emphysema", American Journal of Respiratory and Critical Care Medicine, 2015;192(5):e45.
- M. Teussink, M. Breukink, M. van Grinsven, C. Hoyng, B. Klevering, C. Boon, E. de Jong and T. Theelen, "OCT Angiography Compared to Fluorescein and Indocyanine Green Angiography in Chronic Central Serous Chorioretinopathy", Investigative Ophthalmology and Visual Science, 2015;56(9):5229-5237.
- R. Philipsen, C. Sánchez, P. Maduskar, J. Melendez, L. Peters-Bax, J. Peter, R. Dawson, G. Theron, K. Dheda and B. van Ginneken, "Automated chest-radiography as a triage for Xpert testing in resource-constrained settings: a prospective study of diagnostic accuracy and costs", Scientific Reports, 2015;5.
- M. Teussink, B. Cense, M. van Grinsven, B. Klevering, C. Hoyng and T. Theelen, "Impact of motion-associated noise on intrinsic optical signal imaging in humans with optical coherence tomography", Biomedical Optics Express, 2015;6(5):1632-1647.
- D. van der Waal, M. Emaus, M. Bakker, G. den Heeten, N. Karssemeijer, R. Pijnappel, W. Veldhuis, A. Verbeek, C. van Gils and M. Broeders, "Geographic variation in volumetric breast density between screening regions in the Netherlands", European Radiology, 2015;25(11):3328-3337.
- E. Smit, E. Vonken, F. Meijer, J. Dankbaar, A. Horsch, B. van Ginneken, B. Velthuis, I. van der Schaaf and M. Prokop, "Timing-Invariant CT Angiography Derived from CT Perfusion Imaging in Acute Stroke: A Diagnostic Performance Study", American Journal of Neuroradiology, 2015;36:1834-1838.
- M. Emaus, M. Bakker, P. Peeters, C. Loo, R. Mann, M. de Jong, R. Bisschops, J. Veltman, K. Duvivier, M. Lobbes, R. Pijnappel, N. Karssemeijer, H. de Koning, M. van den Bosch, E. Monninkhof, W. Mali, W. Veldhuis and C. van Gils, "MR Imaging as an Additional Screening Modality for the Detection of Breast Cancer in Women Aged 50-75 Years with Extremely Dense Breasts: The DENSE Trial Study Design", Radiology, 2015;277(2):527-537.
- G. Litjens, J. Barentsz, N. Karssemeijer and H. Huisman, "Clinical evaluation of a computer-aided diagnosis system for determining cancer aggressiveness in prostate MRI", European Radiology, 2015;25(11):3187-3199.
- S. van Riel, C. Sánchez, A. Bankier, D. Naidich, J. Verschakelen, E. Scholten, P. de Jong, C. Jacobs, E. van Rikxoort, L. Peters-Bax, M. Snoeren, M. Prokop, B. van Ginneken and C. Schaefer-Prokop, "Observer Variability for Classification of Pulmonary Nodules on Low-Dose CT Images and Its Effect on Nodule Management", Radiology, 2015;277(3):863-871.
- W. van de Ven, Y. Hu, J. Barentsz, N. Karssemeijer, D. Barratt and H. Huisman, "Biomechanical modeling constrained surface-based image registration for prostate MR guided TRUS biopsy", Medical Physics, 2015;42:2470-2481.
- L. Sonnemans, N. Köster, M. Prokop, J. van der Laak and W. Klein, "Liver parenchyma at the site of hypodense parafissural pseudolesion contains increased collagen", Abdominal Imaging, 2015;40:2306-2312.
- E. Pompe, E. van Rikxoort, M. Schmidt, J. Rühaak, L. Gallardo-Estrella, R. Vliegenthart, M. Oudkerk, H. de Koning, B. van Ginneken, P. de Jong, J. Lammers and F. Mohamed Hoesein, "Parametric response mapping adds value to current computed tomography biomarkers in diagnosing chronic obstructive pulmonary disease", American Journal of Respiratory and Critical Care Medicine, 2015;191(9):1084-1086.
- E. Vos, T. Kobus, G. Litjens, T. Hambrock, C. de Hulsbergen-van Kaa, J. Barentsz, M. Maas and T. Scheenen, "Multiparametric Magnetic Resonance Imaging for Discriminating Low-Grade From High-Grade Prostate Cancer", Investigative Radiology, 2015;50:490-497.
- R. Philipsen, P. Maduskar, L. Hogeweg, J. Melendez, C. Sánchez and B. van Ginneken, "Localized energy-based normalization of medical images: application to chest radiography", IEEE Transactions on Medical Imaging, 2015;34(9):1965-75.
- T. Tan, J. Mordang, J. van Zelst, A. Grivegnée, A. Gubern-Mérida, J. Melendez, R. Mann, W. Zhang, B. Platel and N. Karssemeijer, "Computer-aided detection of breast cancers using Haar-like features in automated 3D breast ultrasound", Medical Physics, 2015;42(7):1498-1504.
- M. Winkler Wille, S. van Riel, Z. Saghir, A. Dirksen, J. Pedersen, C. Jacobs, L. Thomsen, E. Scholten, L. Skovgaard and B. van Ginneken, "Predictive Accuracy of the PanCan Lung Cancer Risk Prediction Model -External Validation based on CT from the Danish Lung Cancer Screening Trial", European Radiology, 2015;25:3093-3099.
- J. Oosterwijk-Wakka, M. de Weijert, G. Franssen, W. Leenders, J. van der Laak, O. Boerman, P. Mulders and E. Oosterwijk, "Successful Combination of Sunitinib and Girentuximab in Two Renal Cell Carcinoma Animal Models: A Rationale for Combination Treatment of Patients with Advanced RCC", Neoplasia, 2015;17:215-224.
- L. Hogeweg, C. Sánchez, P. Maduskar, R. Philipsen, A. Story, R. Dawson, G. Theron, K. Dheda, L. Peters-Bax and B. van Ginneken, "Automatic detection of tuberculosis in chest radiographs using a combination of textural, focal, and shape abnormality analysis", IEEE Transactions on Medical Imaging, 2015;34(12):2429-2442.
- F. Mohamed Hoesein, P. de Jong, J. Lammers, W. Mali, M. Schmidt, H. de Koning, C. van der Aalst, M. Oudkerk, R. Vliegenthart, H. Groen, B. van Ginneken, E. van Rikxoort and P. Zanen, "Airway wall thickness associated with forced expiratory volume in 1 second decline and development of airflow limitation", European Respiratory Journal, 2015;45(3):644-651.
- B. Lassen, C. Jacobs, J. Kuhnigk, B. van Ginneken and E. van Rikxoort, "Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans", Physics in Medicine and Biology, 2015;60(3):1307-1323.
- M. van Grinsven, G. Buitendijk, C. Brussee, B. van Ginneken, C. Hoyng, T. Theelen, C. Klaver and C. Sánchez, "Automatic identification of reticular pseudodrusen using multimodal retinal image analysis", Investigative Ophthalmology and Visual Science, 2015;56(1):633-639.
- A. Bluekens, W. Veldkamp, K. Schuur, N. Karssemeijer, M. Broeders and G. den Heeten, "The potential use of ultra-low radiation dose images in digital mammography - a clinical proof-of-concept study in craniocaudal views", British Journal of Radiology, 2015;88(1047):20140626.
- A. Gubern-Mérida, M. Kallenberg, R. Mann, R. Marti and N. Karssemeijer, "Breast Segmentation and Density Estimation in Breast MRI: A Fully Automatic Framework", IEEE Journal of Biomedical and Health Informatics, 2015;19(1):349-357.
- A. Gubern-Mérida, R. Marti, J. Melendez, J. Hauth, R. Mann, N. Karssemeijer and B. Platel, "Automated localization of breast cancer in DCE-MRI", Medical Image Analysis, 2015;20(1):265-274.
- A. Dijkstra, D. Postma, B. van Ginneken, M. Wielpütz, M. Schmidt, N. Becker, M. Owsijewitsch, H. Kauczor, H. de Koning, J. Lammers, M. Oudkerk, C. Brandsma, Y. Bossé, D. Nickle, D. Sin, P. Hiemstra, C. Wijmenga, J. Smolonska, P. Zanen, J. Vonk, M. van den Berge, H. Boezen and H. Groen, "Novel Genes for Airway Wall Thickness Identified with Combined Genome Wide Association and Expression Analyses", American Journal of Respiratory and Critical Care Medicine, 2015;191(5):547-556.
- C. Jacobs, E. van Rikxoort, E. Scholten, P. de Jong, M. Prokop, C. Schaefer-Prokop and B. van Ginneken, "Solid, Part-Solid, or Non-solid?: Classification of Pulmonary Nodules in Low-Dose Chest Computed Tomography by a Computer-Aided Diagnosis System", Investigative Radiology, 2015;50(3):168-173.
- J. Ramos, T. Kockelkorn, I. Ramos, R. Ramos, B. van Ginneken, M. Viergever, A. Campilho and J. Grutters, "Content Based Image Retrieval by Metric Learning from Radiology Reports: Application to Interstitial Lung Diseases", IEEE Journal of Biomedical and Health Informatics, 2015;20(1):281-292.
- E. Scholten, P. de Jong, B. de Hoop, R. van Klaveren, S. van de Amelsvoort-van Vorst, M. Oudkerk, R. Vliegenthart, H. de Koning, C. van der Aalst, R. Vernhout, H. Groen, J. Lammers, B. van Ginneken, C. Jacobs, W. Mali, N. Horeweg, C. Weenink, E. Thunnissen, M. Prokop and H. Gietema, "Towards a close computed tomography monitoring approach for screen detected subsolid pulmonary nodules?", European Respiratory Journal, 2015;45(3):765-773.
- F. Ciompi, C. Jacobs, E. Scholten, M. Winkler Wille, P. de Jong, M. Prokop and B. van Ginneken, "Bag of frequencies: a descriptor of pulmonary nodules in Computed Tomography images", IEEE Transactions on Medical Imaging, 2015;34(4):1-12.
- E. Scholten, P. de Jong, C. Jacobs, B. van Ginneken, S. van Riel, M. Willemink, R. Vliegenthart, M. Oudkerk, H. de Koning, N. Horeweg, M. Prokop, W. Mali and H. Gietema, "Interscan variation of semi-automated volumetry of subsolid pulmonary nodules", European Radiology, 2015;25(4):1040-1047.
- H. Kortman, E. Smit, M. Oei, R. Manniesing, M. Prokop and F. Meijer, "4D-CTA in Neurovascular Disease: A Review", American Journal of Neuroradiology, 2015;36(6):1026-1033.
- E. Scholten, C. Jacobs, B. van Ginneken, S. van Riel, R. Vliegenthart, M. Oudkerk, H. de Koning, N. Horeweg, M. Prokop, H. Gietema, W. Mali and P. de Jong, "Detection and quantification of the solid component in pulmonary subsolid nodules by semiautomatic segmentation", European Radiology, 2015;25(2):488-496.
- E. Scholten, N. Horeweg, H. de Koning, R. Vliegenthart, M. Oudkerk, W. Mali and P. de Jong, "Computed tomographic characteristics of interval and post screen carcinomas in lung cancer screening", European Radiology, 2015;25(1):81-88.
- R. Takx, R. Vliegenthart, F. Mohamed Hoesein, I. Išgum, H. de Koning, W. Mali, C. van der Aalst, P. Zanen, J. Lammers, H. Groen, E. van Rikxoort, M. Schmidt, B. van Ginneken, M. Oudkerk, T. Leiner and P. de Jong, "Pulmonary function and CT biomarkers as risk factors for cardiovascular events in male lung cancer screening participants: the NELSON study", European Radiology, 2015;25(1):65-71.
- J. Melendez, B. van Ginneken, P. Maduskar, R. Philipsen, K. Reither, M. Breuninger, I. Adetifa, R. Maane, H. Ayles and C. Sánchez, "A Novel Multiple-Instance Learning-Based Approach to Computer-Aided Detection of Tuberculosis on Chest X-Rays", IEEE Transactions on Medical Imaging, 2015;34(1):179-192.
- L. Reis\aeter , J. Fütterer, O. Halvorsen, Y. Nyg\r ard, M. Biermann, E. Andersen, K. Gravdal, S. Haukaas, J. Monssen, H. Huisman, L. Akslen, C. Beisland and J. R\orvik , "1.5-T multiparametric MRI using PI-RADS: a region by region analysis to localize the index-tumor of prostate cancer in patients undergoing prostatectomy", Acta Radiologica, 2015;56:500-511.
- J. Van Zelst, B. Platel, N. Karssemeijer and R. Mann, "Multiplanar reconstructions of 3D automated breast ultrasound improve lesion differentiation by radiologists", Academic Radiology, 2015;22(12):1489-1496.
- J. Teuwen, "A note on Gaussian maximal function", Indagationes Mathematicae, 2015;26(1):106-112.
- C. Gatta and F. Ciompi, "Stacked sequential scale-space Taylor context", IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014;36(8):1694-1700.
- G. Litjens, H. Huisman, R. Elliott, N. Shih, M. Feldman, S. Viswanath, J. Fütterer, J. Bomers and A. Madabhushi, "Quantitative identification of magnetic resonance imaging features of prostate cancer response following laser ablation and radical prostatectomy", Journal of Medical Imaging, 2014;1(3):035001-035001.
- C. Schaefer-Prokop, "[HRCT patterns of the most important interstitial lung diseases]", Radiologe, 2014;54(12):1170-1179.
- G. Karemore, M. Nielsen, N. Karssemeijer and S. Brandt, "A method to determine the mammographic regions that show early changes due to the development of breast cancer", Physics in Medicine and Biology, 2014;59(22):6759-6773.
- N. Saksens, E. Kersten, J. Groenewoud, M. van Grinsven, J. van de Ven, C. Sánchez, T. Schick, S. Fauser, A. den Hollander, C. Hoyng and C. Boon, "Clinical characteristics of familial and sporadic age-related macular degeneration: differences and similarities", Investigative Ophthalmology and Visual Science, 2014;55:7085-7092.
- N. Horeweg, J. van Rosmalen, M. Heuvelmans, C. van der Aalst, R. Vliegenthart, E. Scholten, K. ten Haaf, K. Nackaerts, J. Lammers, C. Weenink and others, "Lung cancer probability in patients with CT-detected pulmonary nodules: a prespecified analysis of data from the NELSON trial of low-dose CT screening", Lancet Oncology, 2014;15(12):1332-1341.
- N. Horeweg, E. Scholten, P. de Jong, C. van der Aalst, C. Weenink, J. Lammers, K. Nackaerts, R. Vliegenthart, K. Ten Haaf, U. Yousaf-Khan, M. Heuvelmans, E. Thunnissen, M. Oudkerk, W. Mali and H. de Koning, "Detection of lung cancer through low-dose CT screening (NELSON): a prespecified analysis of screening test performance and interval cancers", Lancet Oncology, 2014;15(12):1342-1350.
- S. Schalekamp, B. van Ginneken, I. van den Berk, I. Hartmann, M. Snoeren, A. Odink, W. van Lankeren, S. Pegge, L. Schijf, N. Karssemeijer and C. Schaefer-Prokop, "Bone suppression increases the visibility of invasive pulmonary aspergillosis in chest radiographs", PLoS One, 2014;9(10):e108551.
- M. Breuninger, B. van Ginneken, R. Philipsen, F. Mhimbira, J. Hella, F. Lwilla, J. van den Hombergh, A. Ross, L. Jugheli, D. Wagner and K. Reither, "Diagnostic accuracy of computer-aided detection of pulmonary tuberculosis in chest radiographs: a validation study from sub-saharan Africa", PLoS One, 2014;9(9):e106381.
- R. Rudyanto, S. Kerkstra, E. van Rikxoort, C. Fetita, P. Brillet, C. Lefevre, W. Xue, X. Zhu, J. Liang, I. Öksüz, D. Ünay, K. Kadipasaoglu, R. Estépar, J. Ross, G. Washko, J. Prieto, M. Hoyos, M. Orkisz, H. Meine, M. Hüllebrand, C. Stöcker, F. Mir, V. Naranjo, E. Villanueva, M. Staring, C. Xiao, B. Stoel, A. Fabijanska, E. Smistad, A. Elster, F. Lindseth, A. Foruzan, R. Kiros, K. Popuri, D. Cobzas, D. Jimenez-Carretero, A. Santos, M. Ledesma-Carbayo, M. Helmberger, M. Urschler, M. Pienn, D. Bosboom, A. Campo, M. Prokop, P. de Jong, C. Ortiz-de-Solorzano, A. Muñoz-Barrutia and B. van Ginneken, "Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: The VESSEL12 study", Medical Image Analysis, 2014;18:1217-1232.
- F. Mohamed Hoesein, P. de Jong, J. Lammers, W. Mali, O. Mets, M. Schmidt, H. de Koning, C. van der Aalst, M. Oudkerk, R. Vliegenthart, B. van Ginneken, E. van Rikxoort and P. Zanen, "Contribution of CT Quantified Emphysema, Air Trapping and Airway Wall Thickness on Pulmonary Function in Male Smokers With and Without COPD", COPD, 2014;11(5):503-509.
- T. Kockelkorn, C. Schaefer-Prokop, G. Bozovic, A. Muñoz-Barrutia, E. van Rikxoort, M. Brown, P. de Jong, M. Viergever and B. van Ginneken, "Interactive lung segmentation in abnormal human and animal chest CT scans", Medical Physics, 2014;41(8):081915.
- J. Melendez, C. Sánchez, B. van Ginneken and N. Karssemeijer, "Improving mass candidate detection in mammograms via feature maxima propagation and local feature selection", Medical Physics, 2014;41(8):081904.
- P. Maduskar, L. Hogeweg, P. de Jong, L. Peters-Bax, R. Dawson, H. Ayles, C. Sánchez and B. van Ginneken, "Cavity contour segmentation in chest radiographs using supervised learning and dynamic programming", Medical Physics, 2014;41(7):071912-1 - 071912-15.
- R. van den Boom, R. Manniesing, M. Oei, W. van der Woude, E. Smit, H. Laue, B. van Ginneken and M. Prokop, "A 4D Digital Phantom for Patient-Specific Simulation of Brain CT Perfusion Protocols", Medical Physics, 2014;41:071907-1 - 071907-9.
- G. Deslee, K. Klooster, M. Hetzel, F. Stanzel, R. Kessler, C. Marquette, C. Witt, S. Blaas, W. Gesierich, F. Herth, J. Hetzel, E. van Rikxoort and D. Slebos, "Lung volume reduction coil treatment for patients with severe emphysema: a European multicentre trial", Thorax, 2014;69(11):980-986.
- C. Schaefer-Prokop, H. Prosch and M. Prokop, "[Lung cancer screening. What have we learnt for the practice so far?]", Radiologe, 2014;54(5):462-469.
- G. Litjens, O. Debats, J. Barentsz, N. Karssemeijer and H. Huisman, "Computer-aided detection of prostate cancer in MRI", IEEE Transactions on Medical Imaging, 2014;33(5):1083-1092.
- S. Dettmer, L. Peters, C. de Wall, C. Schaefer-Prokop, M. Schmidt, G. Warnecke, J. Gottlieb, F. Wacker and H. Shin, "Bronchial wall measurements in patients after lung transplantation: evaluation of the diagnostic value for the diagnosis of bronchiolitis obliterans syndrome", PLoS One, 2014;9(4):e93783.
- O. Gishti, R. Gaillard, R. Manniesing, M. Abrahamse-Berkeveld, E. van der Beek, D. Heppe, E. Steegers, A. Hofman, L. Duijts, B. Durmus and V. Jaddoe, "Fetal and infant growth patterns associated with total and abdominal fat distribution in school-age children", Journal of Clinical Endocrinology and Metabolism, 2014;99(7):2557-2566.
- M. Muyoyeta, P. Maduskar, M. Moyo, N. Kasese, D. Milimo, R. Spooner, N. Kapata, L. Hogeweg, B. van Ginneken and H. Ayles, "The Sensitivity and Specificity of Using a Computer Aided Diagnosis Program for Automatically Scoring Chest X-Rays of Presumptive TB Patients Compared with Xpert MTB/RIF in Lusaka Zambia", PLoS One, 2014;9(4):e93757.
- R. Mann, R. Mus, J. van Zelst, C. Geppert, N. Karssemeijer and B. Platel, "A Novel Approach to Contrast-Enhanced Breast Magnetic Resonance Imaging for Screening: High-Resolution Ultrafast Dynamic Imaging", Investigative Radiology, 2014;49(9):579-585.
- S. Schalekamp, B. van Ginneken, E. Koedam, M. Snoeren, A. Tiehuis, R. Wittenberg, N. Karssemeijer and C. Schaefer-Prokop, "Computer aided detection improves detection of pulmonary nodules in chest radiographs beyond the support by bone suppressed images", Radiology, 2014;272(1):252-261.
- S. Schalekamp, B. van Ginneken, E. Koedam, M. Snoeren, A. Tiehuis, R. Wittenberg, N. Karssemeijer and C. Schaefer-Prokop, "Computer-aided detection improves detection of pulmonary nodules in chest radiographs beyond the support by bone-suppressed images", Radiology, 2014;272(1):252-261.
- S. Schalekamp, B. van Ginneken, B. Heggelman, M. Imhof-Tas, I. Somers, M. Brink, M. Spee, C. Schaefer-Prokop and N. Karssemeijer, "New methods for using computer-aided detection information for the detection of lung nodules on chest radiographs", British Journal of Radiology, 2014;87(1036):20140015.
- B. Durmus, D. Heppe, O. Gishti, R. Manniesing, M. Abrahamse-Berkeveld, E. van der Beek, A. Hofman, L. Duijts, R. Gaillard and V. Jaddoe, "General and abdominal fat outcomes in school-age children associated with infant breastfeeding patterns", American Journal of Clinical Nutrition, 2014;12(6):1351-1358.
- S. Muenzing, B. van Ginneken, M. Viergever and J. Pluim, "DIRBoost-An algorithm for boosting deformable image registration: Application to lung CT intra-subject registration", Medical Image Analysis, 2014;18(3):449-459.
- J. Bozek, M. Kallenberg, M. Grgic and N. Karssemeijer, "Use of volumetric features for temporal comparison of mass lesions in full field digital mammograms", Medical Physics, 2014;41(2):021902.
- S. Schalekamp, B. van Ginneken, N. Karssemeijer and C. Schaefer-Prokop, "Chest radiography: new technological developments and their applications", Seminars in Respiratory and Critical Care Medicine, 2014;35(1):3-16.
- A. Gubern-Mérida, M. Kallenberg, B. Platel, R. Mann, R. Marti and N. Karssemeijer, "Volumetric breast density estimation from Full-Field Digital Mammograms: A validation study", PLoS One, 2014;9(1):e85952.
- B. Durmus, D. Heppe, H. Taal, R. Manniesing, H. Raat, A. Hofman, E. Steegers, R. Gaillard and V. Jaddoe, "Parental Smoking During Pregnancy and Total and Abdominal Fat Distribution in School-age Children: the Generation R Study", International Journal of Obesity, 2014;38(7):966-972.
- C. Jacobs, E. van Rikxoort, T. Twellmann, E. Scholten, P. de Jong, J. Kuhnigk, M. Oudkerk, H. de Koning, M. Prokop, C. Schaefer-Prokop and B. van Ginneken, "Automatic Detection of Subsolid Pulmonary Nodules in Thoracic Computed Tomography Images", Medical Image Analysis, 2014;18:374-384.
- G. Litjens, R. Toth, W. van de Ven, C. Hoeks, S. Kerkstra, B. van Ginneken, G. Vincent, G. Guillard, N. Birbeck, J. Zhang, R. Strand, F. Malmberg, Y. Ou, C. Davatzikos, M. Kirschner, F. Jung, J. Yuan, W. Qiu, Q. Gao, P. Edwards, B. Maan, F. van der Heijden, S. Ghose, J. Mitra, J. Dowling, D. Barratt, H. Huisman and A. Madabhushi, "Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge", Medical Image Analysis, 2014;18(2):359-373.
- B. Platel, R. Mus, T. Welte, N. Karssemeijer and R. Mann, "Automated Characterization of Breast Lesions Imaged with an Ultrafast DCE-MR Protocol", IEEE Transactions on Medical Imaging, 2014:225-232.
- F. Mohamed Hoesein, M. Schmidt, O. Mets, H. Gietema, J. Lammers, P. Zanen, H. de Koning, C. van der Aalst, M. Oudkerk, R. Vliegenthart, I. Išgum, M. Prokop, B. van Ginneken, E. van Rikxoort and P. de Jong, "Discriminating dominant computed tomography phenotypes in smokers without or with mild COPD", Respiratory Medicine, 2014;108:136-143.
- S. Balocco, C. Gatta, F. Ciompi, A. Wahle, P. Radeva, S. Carlier, G. Unal, E. Sanidas, J. Mauri, X. Carillo, T. Kovarnik, C. Wang, H. Chen, T. Exarchos, D. Fotiadis, F. Destrempes, G. Cloutier, O. Pujol, M. Alberti, E. Mendizabal-Ruiz, M. Rivera, T. Aksoy, R. Downe and I. Kakadiaris, "Standardized evaluation methodology and reference database for evaluating IVUS image segmentation", Computerized Medical Imaging and Graphics, 2014;38:70-90.
- P. Ciet, P. Wielopolski, R. Manniesing, S. Lever, M. De Bruijne, G. Morana, P. Muzzio, M. Lequin and H. Tiddens, "Spirometer-controlled Cine-Magnetic Resonance Imaging for Diagnosis of Tracheobronchomalacia in Pediatric Patients", European Respiratory Journal, 2014;43(1):115-124.
- S. van der Wal, M. Vaneker, M. Steegers, V. B, M. Kox, J. van der Laak, J. van der Hoeven, K. Vissers and G. Scheffer, "Lidocaine increases the anti-inflammatory cytokine IL-10 following mechanical ventilation in healthy mice", Acta Anaesthesiologica Scandinavica, 2014;59:47-55.
- S. Schalekamp, B. van Ginneken, C. Schaefer-Prokop and N. Karssemeijer, "Influence of study design in receiver operating characteristics studies: sequential versus independent reading", Journal of Medical Imaging, 2014;1(1):015501-015501.
- F. Ciompi, O. Pujol and P. Radeva, "ECOC-DRF: Discriminative Random Fields based on Error-Correcting Output Codes", Pattern Recognition, 2014;47:2193-2204.
- L. Louzao Martinez, E. Friedlander, J. van der Laak and K. Hebeda, "Abundance of IgG4+ Plasma Cells in Isolated Reactive Lymphadenopathy Is No Indication of IgG4-Related Disease", American Journal of Clinical Pathology, 2014;142(4):459-466.
- A. Poncela and L. Gallardo-Estrella, "Command-based voice teleoperation of a mobile robot via a human-robot interface", Robotica, 2014:1-18.
- H. Liu, T. Tan, J. van Zelst, R. Mann, N. Karssemeijer and B. Platel, "Incorporating texture features in a computer-aided breast lesion diagnosis system for automated three-dimensional breast ultrasound", Journal of Medical Imaging, 2014;1(2):024501-024501.
- A. Bria, N. Karssemeijer and F. Tortorella, "Learning from unbalanced data: A cascade-based approach for detecting clustered microcalcifications", Medical Image Analysis, 2013;18(2):241-252.
- E. Scholten, B. de Hoop, C. Jacobs, S. van de Amelsvoort-van Vorst, R. van Klaveren, M. Oudkerk, R. Vliegenthart, H. de Koning, C. van der Aalst, W. Mali, H. Gietema, M. Prokop, B. van Ginneken and P. de Jong, "Semi-automatic quantification of subsolid pulmonary nodules: comparison with manual measurements", PLoS One, 2013;8(11):e80249.
- P. Maduskar, M. Muyoyeta, H. Ayles, L. Hogeweg, L. Peters-Bax and B. van Ginneken, "Detection of tuberculosis with digital chest radiography: automatic reading versus interpretation by clinical officers", International Journal of Tuberculosis and Lung Disease, 2013;17(12):1613-1620.
- T. Tan, B. Platel, T. Twellmann, G. van Schie, R. Mus, A. Grivegnée, R. Mann and N. Karssemeijer, "Evaluation of the Effect of Computer-Aided Classification of Benign and Malignant Lesions on Reader Performance in Automated Three-dimensional Breast Ultrasound", Academic Radiology, 2013;20(11):1381-1388.
- S. Schalekamp, B. van Ginneken, L. Meiss, L. Peters-Bax, L. Quekel, M. Snoeren, A. Tiehuis, R. Wittenberg, N. Karssemeijer and C. Schaefer-Prokop, "Bone suppressed images improve radiologists' detection performance for pulmonary nodules in chest radiographs", European Journal of Radiology, 2013;82(12):2399-2405.
- G. van Schie, R. Mann, M. Imhof-Tas and N. Karssemeijer, "Generating synthetic mammograms from reconstructed tomosynthesis volumes", IEEE Transactions on Medical Imaging, 2013;32(12):2322-2331.
- J. Huo, K. Okada, E. van Rikxoort, H. Kim, J. Alger, W. Pope, J. Goldin and M. Brown, "Ensemble segmentation for GBM brain tumors on MR images using confidence-based averaging", Medical Physics, 2013;40(9):093502.
- E. van Rikxoort and B. van Ginneken, "Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review", Physics in Medicine and Biology, 2013;58:R187-R220.
- W. van de Ven and J. Barentsz, "Prostate cancer: MRI/US-guided biopsy -- a viable alternative to TRUS-guidance", Nature Reviews Urology, 2013;10:559-560.
- E. Scholten, C. Jacobs, B. van Ginneken, M. Willemink, J. Kuhnigk, P. van Ooijen, M. Oudkerk, W. Mali and P. de Jong, "Computer-Aided Segmentation and Volumetry of Artificial Ground-Glass Nodules at Chest CT", American Journal of Roentgenology, 2013;201(2):295-300.
- L. Hogeweg, C. Sánchez and B. van Ginneken, "Suppression of translucent elongated structures: applications in chest radiography", IEEE Transactions on Medical Imaging, 2013;32(11):2099-2113.
- H. Prosch and C. Schaefer-Prokop, "[Radiological evaluation of incidental pulmonary nodules]", Radiologe, 2013;53(7):623-638.
- N. Horeweg, C. van der Aalst, R. Vliegenthart, Y. Zhao, X. Xie, E. Scholten, W. Mali, E. Thunnissen, C. Weenink, H. Groen, J. Lammers, K. Nackaerts, J. van Rosmalen, M. Oudkerk and H. de Koning, "Volumetric computed tomography screening for lung cancer: three rounds of the NELSON trial", European Respiratory Journal, 2013;42(6):1659-1667.
- L. Hogeweg, C. Sánchez, J. Melendez, P. Maduskar, A. Story, A. Hayward and B. van Ginneken, "Foreign object detection and removal to improve automated analysis of chest radiographs", Medical Physics, 2013;40(7):071901.
- F. Mohamed Hoesein, P. de Jong, J. Lammers, W. Mali, M. Schmidt, H. de Koning, C. van der Aalst, M. Oudkerk, R. Vliegenthart, B. van Ginneken, E. van Rikxoort and P. Zanen, "Computed tomography structural lung changes in discordant airflow obstruction", PLoS One, 2013;8(6):e65177.
- O. Mets, R. Vliegenthart, M. Gondrie, M. Viergever, M. Oudkerk, H. de Koning, W. Mali, M. Prokop, R. van Klaveren, Y. van der Graaf, C. Buckens, P. Zanen, J. Lammers, H. Groen, I. Išgum and P. de Jong, "Lung Cancer Screening CT-Based Prediction of Cardiovascular Events", JACC Cardiovascular Imaging, 2013;6:899-907.
- E. Smit, E. Vonken, T. van Seeters, J. Dankbaar, I. van der Schaaf, L. Kappelle, B. van Ginneken, B. Velthuis and M. Prokop, "Timing-Invariant Imaging of Collateral Vessels in Acute Ischemic Stroke", Stroke, 2013;44:2194-2199.
- E. Vos, G. Litjens, T. Kobus, T. Hambrock, C. Kaa, J. Barentsz, H. Huisman and T. Scheenen, "Assessment of Prostate Cancer Aggressiveness Using Dynamic Contrast-enhanced Magnetic Resonance Imaging at 3T", European Urology, 2013;64:448-455.
- O. Mets, M. Schmidt, C. Buckens, M. Gondrie, I. Išgum, M. Oudkerk, R. Vliegenthart, H. de Koning, C. van der Aalst, M. Prokop, J. Lammers, P. Zanen, F. Mohamed Hoesein, W. Mali, B. van Ginneken, E. van Rikxoort and P. de Jong, "Diagnosis of chronic obstructive pulmonary disease in lung cancer screening Computed Tomography scans: independent contribution of emphysema, air trapping and bronchial wall thickening", Respiratory Research, 2013;14(1):59.
- T. Tan, B. Platel, R. Mus, L. Tabar, R. Mann and N. Karssemeijer, "Computer-aided Detection of Cancer in Automated 3D Breast Ultrasound", IEEE Transactions on Medical Imaging, 2013;32:1698-1706.
- F. Mohamed Hoesein, P. Zanen, P. de Jong, B. van Ginneken, H. Boezen, H. Groen, M. Oudkerk, H. de Koning, D. Postma and J. Lammers, "Rate of progression of CT-quantified emphysema in male current and ex-smokers: a follow-up study", Respiratory Research, 2013;14(1):55.
- M. Giger, N. Karssemeijer and J. Schnabel, "Breast Image Analysis for Risk Assessment, Detection, Diagnosis, and Treatment of Cancer", Annual Review of Biomedical Engineering, 2013;15:327-57.
- O. Mets, P. de Jong, B. van Ginneken, C. Kruitwagen, M. Prokop, M. Oudkerk, J. Lammers and P. Zanen, "CT Air Trapping Is Independently Associated with Lung Function Reduction over Time", PLoS One, 2013;8(4):e61783.
- R. Hameeteman, S. Rozie, C. Metz, R. Manniesing, T. van Walsum, A. van der Lugt, W. Niessen and S. Klein, "Automated Carotid Artery Distensibility Measurements from CTA using Nonrigid Registration", Medical Image Analysis, 2013;17:515-24.
- E. Scholten, W. Mali, M. Prokop, B. van Ginneken, R. Glandorf, R. van Klaveren, M. Oudkerk and P. de Jong, "Non-solid lung nodules on low-dose computed tomography: comparison of detection rate between 3 visualization techniques", Cancer Imaging, 2013;13(2):150-154.
- M. van Grinsven, Y. Lechanteur, J. van de Ven, B. van Ginneken, C. Hoyng, T. Theelen and C. Sánchez, "Automatic Drusen Quantification and Risk Assessment of Age-related Macular Degeneration on Color Fundus Images", Investigative Ophthalmology and Visual Science, 2013;54(4):3019-3027.
- G. van Schie, M. Wallis, K. Leifland, M. Danielsson and N. Karssemeijer, "Mass detection in reconstructed digital breast tomosynthesis volumes with a computer-aided detection system trained on 2D mammograms", Medical Physics, 2013;40(4):041902.
- N. Fens, A. van Rossum, P. Zanen, B. van Ginneken, R. van Klaveren, A. Zwinderman and P. Sterk, "Subphenotypes of Mild-to-Moderate COPD by Factor and Cluster Analysis of Pulmonary Function, CT Imaging and Breathomics in a Population-Based Survey", COPD, 2013;10:277-285.
- M. Velikova, P. Lucas, M. Samulski and N. Karssemeijer, "On the interplay of machine learning and background knowledge in image interpretation by Bayesian Networks", Artificial Intelligence in Medicine, 2013;57:73AC/a,!aEURoe86.
- A. Dijkstra, D. Postma, N. Ten Hacken, J. Vonk, M. Oudkerk, P. van Ooijen, P. Zanen, F. Mohamed Hoesein, B. van Ginneken, M. Schmidt and H. Groen, "Low-dose CT measurements of airway dimensions and emphysema associated with airflow limitation in heavy smokers: a cross sectional study", Respiratory Research, 2013;14(11):1-9.
- N. Horeweg, C. van der Aalst, E. Thunnissen, K. Nackaerts, C. Weenink, H. Groen, J. Lammers, J. Aerts, E. Scholten, J. van Rosmalen, W. Mali, M. Oudkerk and H. de Koning, "Characteristics of lung cancers detected by computer tomography screening in the randomized NELSON trial", American Journal of Respiratory and Critical Care Medicine, 2013;187(8):848-854.
- K. Nagel, M. Schouten, T. Hambrock, G. Litjens, C. Hoeks, B. Haken, J. Barentsz and J. Fütterer, "Differentiation of Prostatitis and Prostate Cancer by Using Diffusion-weighted MR Imaging and MR-guided Biopsy at 3 T", RADIOLOGY, 2013;267:164-172.
- T. Tan, B. Platel, R. Mann, H. Huisman and N. Karssemeijer, "Chest Wall Segmentation in Automated 3D Breast Ultrasound Scans", Medical Image Analysis, 2013;17:1273AC/a,!aEURoe1281.
- H. Prosch, C. Schaefer-Prokop, E. Eisenhuber, D. Kienzl and C. Herold, "CT protocols in interstitial lung diseases-A survey among members of the European Society of Thoracic Imaging and a review of the literature", European Radiology, 2013;33:1553-1563.
- T. Hambrock, P. Vos, C. de Hulsbergen-van Kaa, J. Barentsz and H. Huisman, "Prostate Cancer: Computer-aided Diagnosis with Multiparametric 3-T MR Imaging--Effect on Observer Performance", Radiology, 2013;266:521-530.
- W. van de Ven, C. de Hulsbergen-van Kaa, T. Hambrock, J. Barentsz and H. Huisman, "Simulated required accuracy of image registration tools for targeting high-grade cancer components with prostate biopsies", European Radiology, 2013;23(5):1401-1407.
- R. Hupse, M. Samulski, M. Lobbes, R. Mann, R. Mus, G. den Heeten, D. Beijerinck, R. Pijnappel, C. Boetes and N. Karssemeijer, "Computer-aided Detection of Masses at Mammography: Interactive Decision Support versus Prompts", Radiology, 2013;266:123-129.
- A. Srikantha, M. Harz, L. Wang, B. Platel, R. Mann, H. Hahn and H. Peitgen, "Symmetry-based detection of ductal carcinoma in situ in breast MRI", European Journal of Radiology, 2013;81 Suppl 1:S158-S159.
- D. Naidich, A. Bankier, H. MacMahon, C. Schaefer-Prokop, M. Pistolesi, J. Goo, P. Macchiarini, J. Crapo, C. Herold, J. Austin and W. Travis, "Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society", Radiology, 2013;266(1):304-317.
- B. Lassen, E. van Rikxoort, M. Schmidt, S. Kerkstra, B. van Ginneken and J. Kuhnigk, "Automatic segmentation of the pulmonary lobes from chest CT scans based on fissures, vessels, and bronchi", IEEE Transactions on Medical Imaging, 2013;32(2):210-222.
- A. Firouzian, R. Manniesing, C. Metz, R. Risselada, S. Klein, F. van Kooten, M. Sturkenboom, A. van der Lugt and W. Niessen, "Quantification of Intracranial Aneurysm Morphodynamics from ECG-gated CT Angiography", Academic Radiology, 2013;20(1):52-58.
- R. Hupse, M. Samulski, M. Lobbes, A. den Heeten, M. Imhof-Tas, D. Beijerinck, R. Pijnappel, C. Boetes and N. Karssemeijer, "Standalone computer-aided detection compared to radiologists' performance for the detection of mammographic masses", European Radiology, 2013;23:93-100.
- N. Lessmann, D. Dromann and A. Schlaefer, "Feasibility of respiratory motion-compensated stereoscopic X-ray tracking for bronchoscopy", International Journal of Computer Assisted Radiology and Surgery, 2013;9:199-209.
- R. Brecheisen, B. Platel, B. ter Romeny and A. Vilanova, "Illustrative uncertainty visualization of DTI fiber pathways", Visual Computer, 2013;29:297-309.
- R. van der Post, J. van der Laak, B. Sturm, R. Clarijs, E. Schaafsma, H. van Krieken and M. Nap, "The evaluation of colon biopsies using virtual microscopy is reliable", Histopathology, 2013;63:114-121.
- O. Mets, P. Zanen, J. Lammers, I. Išgum, H. Gietema, B. van Ginneken, M. Prokop and P. de Jong, "Early Identification of Small Airways Disease on Lung Cancer Screening CT: Comparison of Current Air Trapping Measures", Lung, 2012;190:629-633.
- A. Bluekens, R. Holland, N. Karssemeijer, M. Broeders and G. den Heeten, "Comparison of Digital Screening Mammography and Screen-Film Mammography in the Early Detection of Clinically Relevant Cancers: A Multicenter Study", Radiology, 2012;265:707-714.
- L. Hogeweg, C. Sánchez, P. de Jong, P. Maduskar and B. van Ginneken, "Clavicle segmentation in chest radiographs", Medical Image Analysis, 2012;16(8):1490 - 1502.
- S. Muenzing, B. van Ginneken, K. Murphy and J. Pluim, "Supervised Quality Assessment Of Medical Image Registration: Application to intra-patient CT lung registration", Medical Image Analysis, 2012;16:1521-1531.
- I. Išgum, M. Prokop, M. Niemeijer, M. Viergever and B. van Ginneken, "Automatic coronary calcium scoring in low-dose chest computed tomography", IEEE Transactions on Medical Imaging, 2012;31:2322 - 2334.
- B. de Hoop, B. van Ginneken, H. Gietema and M. Prokop, "Pulmonary Perifissural Nodules on CT Scans: Rapid Growth Is Not a Predictor of Malignancy", Radiology, 2012;265(2):611-616.
- G. Litjens, T. Hambrock, C. de Hulsbergen-van Kaa, J. Barentsz and H. Huisman, "Interpatient Variation in Normal Peripheral Zone Apparent Diffusion Coefficient: Effect on the Prediction of Prostate Cancer Aggressiveness", Radiology, 2012;265(1):260-266.
- P. Lo, B. van Ginneken, J. Reinhardt, Y. Tarunashree, P. de Jong, B. Irving, C. Fetita, M. Ortner, R. Pinho, J. Sijbers, M. Feuerstein, A. Fabijanska, C. Bauer, R. Beichel, C. Mendoza, R. Wiemker, J. Lee, A. Reeves, S. Born, O. Weinheimer, E. van Rikxoort, J. Tschirren, K. Mori, B. Odry, D. Naidich, I. Hartmann, E. Hoffman, M. Prokop, J. Pedersen and M. de Bruijne, "Extraction of Airways from CT (EXACT'09)", IEEE Transactions on Medical Imaging, 2012;31(11):2093-2107.
- F. Ciompi, O. Pujol, C. Gatta, M. Alberti, S. Balocco, X. Carrillo, J. Mauri-Ferre and P. Radeva, "HoliMAb: A holistic approach for Media--Adventitia border detection in intravascular ultrasound", Medical Image Analysis, 2012.
- J. Lesniak, R. Hupse, R. Blanc, N. Karssemeijer and G. Székely, "Comparative evaluation of support vector machine classification for computer aided detection of breast masses in mammography", Physics in Medicine and Biology, 2012;57(16):5295-5307.
- T. Kobus, P. Vos, T. Hambrock, M. De Rooij, C. de Hulsbergen-Van Kaa, J. Barentsz, A. Heerschap and T. Scheenen, "Prostate Cancer Aggressiveness: In Vivo Assessment of MR Spectroscopy and Diffusion-weighted Imaging at 3 T", Radiology, 2012;265:457-467.
- M. Kallenberg, C. van Gils, M. Lokate, G. den Heeten and N. Karssemeijer, "Effect of compression paddle tilt correction on volumetric breast density estimation", Physics in Medicine and Biology, 2012;57(16):5155-5168.
- O. Mets, R. van Hulst, C. Jacobs, B. van Ginneken and P. de Jong, "Normal Range of Emphysema and Air Trapping on CT in Young Men", American Journal of Roentgenology, 2012;199(2):336-340.
- M. Stoutjesdijk, M. Zijp, C. Boetes, N. Karssemeijer, J. Barentsz and H. Huisman, "Computer aided analysis of breast MRI enhancement kinetics using mean shift c lustering and multifeature iterative region of interest selection", Journal of Magnetic Resonance Imaging, 2012;36:1104-1112.
- E. Brunenberg, P. Moeskops, W. Backes, C. Pollo, L. Cammoun, A. Vilanova, M. Janssen, V. Visser-Vandewalle, B. Haar Ter Romeny, J. Thiran and B. Platel, "Structural and Resting State Functional Connectivity of the Subthalamic Nucleus: Identification of Motor STN Parts and the Hyperdirect Pathway", PLoS One, 2012;7(6):e39061.
- F. Mohamed Hoesein, P. Zanen, H. Boezen, H. Groen, B. van Ginneken, P. de Jong, D. Postma and J. Lammers, "Lung function decline in heavy male smokers relates to baseline airflow obstruction severity", Chest, 2012;142(6):1530-1538.
- A. Mendrik, E. Vonken, G. de Kort, B. van Ginneken, E. Smit, M. Viergever and M. Prokop, "Improved Arterial Visualization in Cerebral CT Perfusion-Derived Arteriograms Compared with Standard CT Angiography: A Visual Assessment Study", American Journal of Neuroradiology, 2012;33(11):2171-2177.
- M. Leach, B. Morgan, P. Tofts, D. Buckley, W. Huang, M. Horsfield, T. Chenevert, D. Collins, A. Jackson, D. Lomas, B. Whitcher, L. Clarke, R. Plummer, I. Judson, R. Jones, R. Alonzi, T. Brunner, D. Koh, P. Murphy, J. Waterton, G. Parker, M. Graves, T. Scheenen, T. Redpath, M. Orton, G. Karczmar, H. Huisman, J. Barentsz, A. Padhani and E. on behalf of the Committee, "Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging", European Radiology, 2012;22(7):1451-1464.
- H. Meijer, O. Debats, M. Roach 3rd, P. Span, J. Witjes, J. Kaanders, E. van Lin and J. Barentsz, "Magnetic Resonance Lymphography Findings in Patients With Biochemical Recurrence After Prostatectomy and the Relation With the Stephenson Nomogram", International Journal of Radiation Oncology, Biology, Physics, 2012;84(5):1186-1191.
- T. Mertzanidou, J. Hipwell, M. Cardoso, X. Zhang, C. Tanner, S. Ourselin, U. Bick, H. Huisman, N. Karssemeijer and D. Hawkes, "MRI to X-ray mammography registration using a volume-preserving affine transformation", Medical Image Analysis, 2012;16(5):966-975.
- D. De Boo, F. van Hoorn, J. van Schuppen, L. Schijf, M. Scheerder, N. Freling, O. Mets, M. Weber and C. Schaefer-Prokop, "Observer training for computer-aided detection of pulmonary nodules in chest radiography", European Radiology, 2012;22(8):1659-1664.
- A. Fortuin, W. Deserno, H. Meijer, G. Jager, S. Takahashi, O. Debats, S. Reske, C. Schick, B. Krause, I. van Oort, A. Witjes, Y. Hoogeveen, E. van Th Lin and J. Barentsz, "Value of PET/CT and MR Lymphography in Treatment of Prostate Cancer Patients with Lymph Node Metastases", International Journal of Radiation Oncology, Biology, Physics, 2012;84:712-718.
- E. Eisenhuber, C. Schaefer-Prokop, H. Prosch and W. Schima, "Bedside chest radiography", Respiratory Care, 2012;57(3):427-443.
- P. Vos, J. Barentsz, N. Karssemeijer and H. Huisman, "Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis", Physics in Medicine and Biology, 2012;57(6):1527-1542.
- K. Murphy, J. Pluim, E. van Rikxoort, P. de Jong, B. de Hoop, H. Gietema, O. Mets, M. de Bruijne, P. Lo, M. Prokop and B. van Ginneken, "Toward automatic regional analysis of pulmonary function using inspiration and expiration thoracic CT", Medical Physics, 2012;39(3):1650-1662.
- P. Jacobs, M. Gondrie, Y. van der Graaf, H. de Koning, I. Išgum, B. van Ginneken and W. Mali, "Coronary Artery Calcium Can Predict All-Cause Mortality and Cardiovascular Events on Low-Dose CT Screening for Lung Cancer", American Journal of Roentgenology, 2012;198(3):505-511.
- E. Smit, E. Vonken, I. van der Schaaf, A. Mendrik, J. Dankbaar, A. Horsch, T. van Seeters, B. van Ginneken and M. Prokop, "Timing-Invariant Reconstruction for Deriving High-quality CT Angiographic Data from Cerebral CT Perfusion Data", Radiology, 2012;263:216-225.
- M. Velikova, P. Lucas, M. Samulski and N. Karssemeijer, "A probabilistic framework for image information fusion with an application to mammographic analysis", Medical Image Analysis, 2012;16:865-875.
- F. Mohamed Hoesein, E. van Rikxoort, B. van Ginneken, P. de Jong, M. Prokop, J. Lammers and P. Zanen, "CT-quantified emphysema distribution is associated with lung function decline", European Respiratory Journal, 2012;40(4):844-850.
- T. Tan, B. Platel, H. Huisman, C. Sánchez, R. Mus and N. Karssemeijer, "Computer Aided Lesion Diagnosis in Automated 3D Breast Ultrasound Using Coronal Spiculation", IEEE Transactions on Medical Imaging, 2012;31(5):1034-1042.
- M. Kallenberg and N. Karssemeijer, "Compression paddle tilt correction in full-field digital mammograms", Physics in Medicine and Biology, 2012;57(3):703-715.
- M. Alberti, S. Balocco, C. Gatta, F. Ciompi, O. Pujol, J. Silva, X. Carrillo and P. Radeva, "Automatic bifurcation detection in coronary IVUS sequences", IEEE Transactions on Biomedical Engineering, 2012;59(4):1022-1031.
- R. Wittenberg, F. Berger, J. Peters, M. Weber, F. van Hoorn, L. Beenen, M. van Doorn, J. van Schuppen, I. Zijlstra, M. Prokop and C. Schaefer-Prokop, "Acute pulmonary embolism: effect of a computer-assisted detection prototype on diagnosis--an observer study", Radiology, 2012;262(1):305-313.
- P. Boiselle, L. Goodman, D. Litmanovich, M. Rémy-Jardin and C. Schaefer-Prokop, "Expert opinion: CT pulmonary angiography in pregnant patients with suspected pulmonary embolism", Journal of Thoracic Imaging, 2012;27(1):5.
- O. Mets, P. de Jong, B. van Ginneken, H. Gietema and J. Lammers, "Quantitative Computed Tomography in COPD: Possibilities and Limitations", Lung, 2012;190:133-145.
- D. Yakar, O. Debats, J. Bomers, M. Schouten, P. Vos, E. van Lin, J. Fütterer and J. Barentsz, "Predictive value of MRI in the localization, staging, volume estimation, assessment of aggressiveness, and guidance of radiotherapy and biopsies in prostate cancer", Journal of Magnetic Resonance Imaging, 2012;35(1):20-31.
- R. Wittenberg, J. Peters, M. Weber, R. Lely, L. Cobben, M. Prokop and C. Schaefer-Prokop, "Stand-alone performance of a computer-assisted detection prototype for detection of acute pulmonary embolism: a multi-institutional comparison", British Journal of Radiology, 2012;85(1014):758-764.
- R. Visser, W. Veldkamp, D. Beijerinck, P. Bun, J. Deurenberg, M. Imhof-Tas, K. Schuur, M. Snoeren, G. den Heeten, N. Karssemeijer and M. Broeders, "Increase in perceived case suspiciousness due to local contrast optimisation in digital screening mammography", European Radiology, 2012;22(4):908-914.
- D. Chong, M. Brown, H. Kim, E. van Rikxoort, L. Guzman, M. McNitt-Gray, M. Khatonabadi, M. Galperin-Aizenberg, K. Yang, Y. Jung and J. Goldin, "Reproducibility of volume and densitometric measures of emphysema on repeat computed tomography with an interval of 1 week", European Radiology, 2012:287-294.
- E. van Rikxoort, J. Goldin, F. Abtin, H. Kim, P. Lu, B. van Ginneken, G. Shaw, M. Galperin-Aizenberg and M. Brown, "A method for the automatic quantification of the completeness of pulmonary fissures: evaluation in a database of subjects with severe emphysema", European Radiology, 2012;22(2):302-309.
- M. Schouten, J. Bomers, D. Yakar, H. Huisman, E. Rothgang, D. Bosboom, T. Scheenen, S. Misra and J. Fütterer, "Evaluation of a robotic technique for transrectal MRI-guided prostate biopsies", European Radiology, 2012;22:476-483.
- T. Hambrock, C. Hoeks, C. de Hulsbergen-van Kaa, T. Scheenen, J. Fütterer, S. Bouwense, I. van Oort, F. Schröder, H. Huisman and J. Barentsz, "Prospective Assessment of Prostate Cancer Aggressiveness Using 3-T Diffusion-Weighted Magnetic Resonance Imaging-Guided Biopsies Versus a Systematic 10-Core Transrectal Ultrasound Prostate Biopsy Cohort", European Urology, 2012;61(1):177-184.
- O. Mets, K. Murphy, P. Zanen, H. Gietema, J. Lammers, B. van Ginneken, M. Prokop and P. de Jong, "The relationship between lung function impairment and quantitative computed tomography in chronic obstructive pulmonary disease", European Radiology, 2012;22(1):120-128.
- C. Sánchez, M. Niemeijer, I. Išgum, A. Dumitrescu, M. Suttorp-Schulten, M. Abràmoff and B. van Ginneken, "Contextual computer-aided detection: Improving bright lesion detection in retinal images and coronary calcification identification in CT scans", Medical Image Analysis, 2012;16(1):50-62.
- H. Meijer, E. van Lin, O. Debats, J. Witjes, P. Span, J. Kaanders and J. Barentsz, "High Occurrence of Aberrant Lymph Node Spread on Magnetic Resonance Lymphography in Prostate Cancer Patients with a Biochemical Recurrence After Radical Prostatectomy", International Journal of Radiation Oncology, Biology, Physics, 2012;82 (4):1405-1410.
- D. Vukadinovic, S. Rozie, M. van Gils, T. van Walsum, R. Manniesing, A. van der Lugt and W. Niessen, "Automated versus manual segmentation of atherosclerotic carotid plaque volume and components in CTA: associations with cardiovascular risk factors", International Journal of Cardiovascular Imaging, 2012;28:877-887.
- R. Wittenberg, J. van Vliet, B. Ghaye, J. Peters, C. Schaefer-Prokop and E. Coche, "Comparison of automated 4-chamber cardiac views versus axial views for measuring right ventricular enlargement in patients with suspected pulmonary embolism", European Journal of Radiology, 2012;81(2):218-222.
- H. Meijer, O. Debats, M. Kunze-Busch, P. van Kollenburg, J. Leer, J. Witjes, J. Kaanders, J. Barentsz and E. van Lin, "Magnetic Resonance Lymphography-Guided Selective High-Dose Lymph Node Irradiation in Prostate Cancer", International Journal of Radiation Oncology, Biology, Physics, 2012;82(1):175-183.
- T. Roelofsen, L. van Kempen, J. van der Laak, M. van Ham, J. Bulten and L. Massuger, "Concurrent Endometrial Intraepithelial Carcinoma (EIC) and Serous Ovarian Cancer. Can EIC Be Seen as the Precursor Lesion?", International Journal of Gynaecological Cancer, 2012;22(3):457-464.
- B. van Ginneken, C. Schaefer-Prokop and M. Prokop, "Computer-aided Diagnosis: how to Move from the Laboratory to the Clinic", Radiology, 2011;261(3):719-732.
- A. Melbourne, J. Hipwell, M. Modat, T. Mertzanidou, H. Huisman, S. Ourselin and D. Hawkes, "The effect of motion correction on pharmacokinetic parameter estimation in dynamic-contrast-enhanced MRI", Physics in Medicine and Biology, 2011;56(24):7693-7708.
- O. Debats, G. Litjens, J. Barentsz, N. Karssemeijer and H. Huisman, "Automated 3-Dimensional Segmentation of Pelvic Lymph Nodes in Magnetic Resonance Images", Medical Physics, 2011;38(11):6178-6187.
- O. Mets, C. Buckens, P. Zanen, I. Išgum, B. van Ginneken, M. Prokop, H. Gietema, J. Lammers, R. Vliegenthart, M. Oudkerk, R. van Klaveren, H. de Koning, W. Mali and P. de Jong, "Identification of Chronic Obstructive Pulmonary Disease in Lung Cancer Screening Computed Tomographic Scans", Journal of the American Medical Association, 2011;306(16):1775-1781.
- D. de Boo, M. Uffmann, S. Bipat, E. Boorsma, M. Scheerder, M. Weber and C. Schaefer-Prokop, "Gray-Scale Reversal for the Detection of Pulmonary Nodules on a PACS Workstation", American Journal of Roentgenology, 2011;197(5):1096-1100.
- X. Carrillo, E. Fernandez-Nofrerias, F. Ciompi, O. Rodriguez-Leor, P. Radeva, N. Salvatella, O. Pujol, J. Mauri and A. Bayes-Genis, "Changes in radial artery volume assessed using intravascular ultrasound: a comparison of two vasodilator regimens in transradial coronary interventions", Journal of Invasive Cardiology, 2011;23(10):401-404.
- D. de Boo, M. Uffmann, M. Weber, S. Bipat, E. Boorsma, M. Scheerder, N. Freling and C. Schaefer-Prokop, "Computer-aided Detection of Small Pulmonary Nodules in Chest Radiographs An Observer Study", Academic Radiology, 2011;18(12):1507-1514.
- J. van Dijck, J. Otten, N. Karssemeijer, P. Kenemans, A. Verbeek and M. van der Mooren, "Less mammographic density after nasal versus oral administration of postmenopausal hormone therapy", Climacteric, 2011;14(6):683-688.
- C. Hoeks, J. Barentsz, T. Hambrock, D. Yakar, D. Somford, S. Heijmink, T. Scheenen, P. Vos, H. Huisman, I. van Oort, J. Witjes, A. Heerschap and J. Fütterer, "Prostate Cancer: Multiparametric MR Imaging for Detection, Localization, and Staging", Radiology, 2011;261(1):46-66.
- E. Brunenberg, B. Platel, P. Hofman, B. ter Romeny and V. Visser-Vandewalle, "Magnetic resonance imaging techniques for visualization of the subthalamic nucleus", Journal of Neurosurgery, 2011;115:971-984.
- R. Mann, J. Veltman, H. Huisman and C. Boetes, "Comparison of enhancement characteristics between invasive lobular carcinoma and invasive ductal carcinoma", Journal of Magnetic Resonance Imaging, 2011;34(2):293-300.
- G. van Schie, C. Tanner, P. Snoeren, M. Samulski, K. Leifland, M. Wallis and N. Karssemeijer, "Correlating locations in ipsilateral breast tomosynthesis views using an analytical hemispherical compression model", Physics in Medicine and Biology, 2011;56(15):4715-4730.
- M. Niemeijer, X. Xu, A. Dumitrescu, P. Gupta, B. van Ginneken, J. Folk and M. Abràmoff, "Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs", IEEE Transactions on Medical Imaging, 2011;31(11):1941-1950.
- M. Nillesen, R. Lopata, H. Huisman, J. Thijssen, L. Kapusta and C. de Korte, "Correlation based 3-D segmentation of the left ventricle in pediatric echocardiographic images using radio-frequency data", Ultrasound in Medicine and Biology, 2011;37(9):1409-1420.
- A. Mendrik, E. Vonken, B. van Ginneken, H. de Jong, A. Riordan, T. van Seeters, E. Smit, M. Viergever and M. Prokop, "TIPS bilateral noise reduction in 4D CT perfusion scans produces high-quality cerebral blood flow maps", Physics in Medicine and Biology, 2011;56:3857-3872.
- K. Murphy, B. van Ginneken, J. Reinhardt, S. Kabus, K. Ding, X. Deng, K. Cao, K. Du, G. Christensen, V. Garcia, T. Vercauteren, N. Ayache, O. Commowick, G. Malandain, B. Glocker, N. Paragios, N. Navab, V. Gorbunova, J. Sporring, M. de Bruijne, X. Han, M. Heinrich, J. Schnabel, M. Jenkinson, C. Lorenz, M. Modat, J. McClelland, S. Ourselin, S. Muenzing, M. Viergever, D. Nigris, D. Collins, T. Arbel, M. Peroni, R. Li, G. Sharp, A. Schmidt-Richberg, J. Ehrhardt, R. Werner, D. Smeets, D. Loeckx, G. Song, N. Tustison, B. Avants, J. Gee, M. Staring, S. Klein, B. Stoel, M. Urschler, M. Werlberger, J. Vandemeulebroucke, S. Rit, D. Sarrut and J. Pluim, "Evaluation of Registration Methods on Thoracic CT: The EMPIRE10 Challenge", IEEE Transactions on Medical Imaging, 2011;31(11):1901-1920.
- S. Brandt, G. Karemore, N. Karssemeijer and M. Nielsen, "An Anatomically Oriented Breast Coordinate System for Mammogram Analysis", IEEE Transactions on Medical Imaging, 2011;30(10):1841-1851.
- D. de Boo, M. Weber, E. Deurloo, G. Streekstra, N. Freling, D. Dongelmans and C. Schaefer-Prokop, "Computed radiography versus mobile direct radiography for bedside chest radiographs: impact of dose on image quality and reader agreement", Clinical Radiology, 2011;66(9):826-832.
- F. Mohamed Hoesein, P. Zanen, B. van Ginneken, R. van Klaveren and J. Lammers, "Association of the transfer coefficient of the lung for carbon monoxide with emphysema progression in male smokers", European Respiratory Journal, 2011;38:1012-1018.
- C. Sánchez, M. Niemeijer, A. Dumitrescu, M. Suttorp-Schulten, M. Abràmoff and B. van Ginneken, "Evaluation of a Computer-Aided Diagnosis system for Diabetic Retinopathy screening on public data", Investigative Ophthalmology and Visual Science, 2011;52:4866-4871.
- F. Mohamed Hoesein, B. de Hoop, P. Zanen, H. Gietema, C. Kruitwagen, B. van Ginneken, I. Išgum, C. Mol, R. van Klaveren, A. Dijkstra, H. Groen, H. Boezen, D. Postma, M. Prokop and J. Lammers, "CT-quantified emphysema in male heavy smokers: association with lung function decline", Thorax, 2011;66:782-787.
- G. den Heeten and N. Karssemeijer, "[Computerised assessment of screening mammograms]", Nederlands Tijdschrift voor Geneeskunde, 2011;155(18):A3025.
- M. Kallenberg, M. Lokate, C. van Gils and N. Karssemeijer, "Automatic breast density segmentation: an integration of different approaches", Physics in Medicine and Biology, 2011;56(9):2715-2729.
- M. Adriaensen, C. Schaefer-Prokop, D. Duyndam, B. Zonnenberg and M. Prokop, "Radiological evidence of lymphangioleiomyomatosis in female and male patients with tuberous sclerosis complex", Clinical Radiology, 2011;66(7):625-628.
- T. Hambrock, D. Somford, H. Huisman, I. van Oort, J. Witjes, C. de Hulsbergen-van Kaa, T. Scheenen and J. Barentsz, "Relationship between Apparent Diffusion Coefficients at 3.0-T MR Imaging and Gleason Grade in Peripheral Zone Prostate Cancer", Radiology, 2011;259(2):453-461.
- M. Samulski and N. Karssemeijer, "Optimizing Case-based Detection Performance in a Multiview CAD System for Mammography", IEEE Transactions on Medical Imaging, 2011;30(4):1001-1009.
- D. Yakar, S. Heijmink, C. de Hulsbergen-van Kaa, H. Huisman, J. Barentsz, J. Fütterer and T. Scheenen, "Initial results of 3-dimensional 1H-magnetic resonance spectroscopic imaging in the localization of prostate cancer at 3 Tesla: should we use an endorectal coil?", Investigative Radiology, 2011;46(5):301-306.
- M. Adriaensen, M. van Oosterhout, H. Feringa, C. Schaefer-Prokop, B. Zonnenberg and M. Prokop, "Mature fat cells in the myocardium of patients with tuberous sclerosis complex", Journal of Clinical Pathology, 2011;64(3):244-245.
- A. Rosenkrantz, M. Oei, J. Babb, B. Niver and B. Taouli, "Diffusion-weighted imaging of the abdomen at 3.0 Tesla: image quality and apparent diffusion coefficient reproducibility compared with 1.5 Tesla", Journal of Magnetic Resonance Imaging, 2011;33(1):128-135.
- R. Wittenberg, J. Peters, J. Sonnemans, S. Bipat, M. Prokop and C. Schaefer-Prokop, "Impact of image quality on the performance of computer-aided detection of pulmonary embolism", American Journal of Roentgenology, 2011;196(1):95-101.
- M. Nielsen, G. Karemore, M. Loog, J. Raundahl, N. Karssemeijer, J. Otten, M. Karsdal, C. Vachon and C. Christiansen, "A novel and automatic mammographic texture resemblance marker is an independent risk factor for breast cancer", Cancer Epidemiology, 2011;35(4):381-387.
- P. de Jong, J. Achterberg, O. Kessels, B. van Ginneken, L. Hogeweg, F. Beek and S. Terheggen-Lagro, "Modified Chrispin-Norman chest radiography score for cystic fibrosis: observer agreement and correlation with lung function", European Radiology, 2011;21:722-729.
- M. Adriaensen, H. Feringa, C. Schaefer-Prokop, S. Cornelissen, B. Zonnenberg and M. Prokop, "Focal fatty areas in the myocardium of patients with tuberous sclerosis complex: a unique finding", Journal of Thoracic Imaging, 2011;26(1):W12-W13.
- M. Niemeijer, M. Loog, M. Abràmoff, M. Viergever, M. Prokop and B. van Ginneken, "On Combining Computer-Aided Detection Systems", IEEE Transactions on Medical Imaging, 2011;30(2):215-223.
- W. Deserno, O. Debats, T. Rozema, A. Fortuin, R. Heesakkers, Y. Hoogeveen, P. Peer, J. Barentsz and E. van Lin, "Comparison of Nodal Risk Formula and MR Lymphography for Predicting Lymph Node Involvement in Prostate Cancer", International Journal of Radiation Oncology, Biology, Physics, 2011;81(1):8-15.
- K. Murphy, B. van Ginneken, S. Klein, M. Staring, B. de Hoop, M. Viergever and J. Pluim, "Semi-automatic construction of reference standards for evaluation of image registration", Medical Image Analysis, 2011;15(1):71-84.
- A. Firouzian, R. Manniesing, H. Flach, R. Risselada, F. van Kooten, M. Sturkenboom, A. van der Lugt and W. Niessen, "Intracranial Aneurysm Segmentation in 3D CT Angiography: Method and Quantitative Validation with and without Prior Noise Filtering", European Journal of Radiology, 2011;79(2):299-304.
- M. Kox, J. Pompe, E. Peters, V. M., J. van der Laak, J. van der Hoeven, G. Scheffer, C. Hoedemaekers and P. Pickkers, "a7 Nicotinic acetylcholine receptor agonist GTS-21 attenuates ventilator-induced tumour necrosis factor-a production and lung injury", British Journal of Anaesthesia, 2011;107(4):559-566.
- J. Seabra, F. Ciompi, O. Pujol, J. Mauri, P. Radeva and J. Sanches, "Rayleigh mixture model for plaque characterization in intravascular ultrasound", IEEE Transactions on Biomedical Engineering, 2011;58(5):1314-1324.
- M. Lokate, M. Kallenberg, N. Karssemeijer, M. van den Bosch, P. Peeters and C. van Gils, "Volumetric breast density from full-field digital mammograms and its association with breast cancer risk factors: a comparison with a threshold method", Cancer Epidemiology Biomarkers and Prevention, 2010;19(12):3096-3105.
- Y. Hu, R. van den Boom, T. Carter, Z. Taylor, D. Hawkes, H. Ahmed, M. Emberton, C. Allen and D. Barratt, "A comparison of the accuracy of statistical models of prostate motion trained using data from biomechanical simulations", Progress in Biophysics and Molecular Biology, 2010;103(2-3):262-272.
- B. de Hoop, D. de Boo, H. Gietema, F. van Hoorn, B. Mearadji, L. Schijf, B. van Ginneken, M. Prokop and C. Schaefer-Prokop, "Computer-aided Detection of Lung Cancer on Chest Radiographs: Effect on Observer Performance", Radiology, 2010;257(2):532-540.
- A. Mendrik, E. Vonken, B. van Ginneken, E. Smit, A. Waaijer, G. Bertolini, M. Viergever and M. Prokop, "Automatic segmentation of intracranial arteries and veins in four-dimensional cerebral CT perfusion scans", Medical Physics, 2010;37(6):2956-2966.
- C. Schaefer-Prokop, "Conventional and CT diagnostics of bronchial carcinoma", Radiologe, 2010;50(8):675-683.
- R. Manniesing, M. Schaap, S. Rozie, R. Hameeteman, D. Vukadinovic, A. van der Lugt and W. Niessen, "Robust CTA lumen segmentation of the atherosclerotic carotid artery bifurcation in a large patient population", Medical Image Analysis, 2010;14(6):759-769.
- B. van Ginneken, S. Armato, B. de Hoop, S. van de Vorst, T. Duindam, M. Niemeijer, K. Murphy, A. Schilham, A. Retico, M. Fantacci, N. Camarlinghi, F. Bagagli, I. Gori, T. Hara, H. Fujita, G. Gargano, R. Belloti, F. Carlo, R. Megna, S. Tangaro, L. Bolanos, P. Cerello, S. Cheran, E. Torres and M. Prokop, "Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the ANODE09 study", Medical Image Analysis, 2010;14:707-722.
- M. Adriaensen, M. Cramer, M. Brouha, C. Schaefer-Prokop, M. Prokop, P. Doevendans, B. Zonnenberg and H. Feringa, "Echocardiographic screening results in patients with tuberous sclerosis complex", Texas Heart Institute Journal, 2010;37(3):280-283.
- M. Samulski, R. Hupse, C. Boetes, R. Mus, G. den Heeten and N. Karssemeijer, "Using Computer Aided Detection in Mammography as a Decision Support", European Radiology, 2010;20(10):2323-2330.
- D. Stegeman, W. van de Ven, G. van Elswijk, R. Oostenveld and B. Kleine, "The alpha-motoneuron pool as transmitter of rhythmicities in cortical motor drive", Clinical Neurophysiology, 2010;121(10):1633-1642.
- R. Hupse and N. Karssemeijer, "The effect of feature selection methods on computer-aided detection of masses in mammograms", Physics in Medicine and Biology, 2010;55(10):2893-2904.
- B. de Hoop, C. Schaefer-Prokop, H. Gietema, P. de Jong, B. van Ginneken, R. van Klaveren and M. Prokop, "Screening for lung cancer with digital chest radiography: sensitivity and number of secondary work-up CT examinations", Radiology, 2010;255(2):629-637.
- P. Jacobs, I. Išgum, M. Gondrie, W. Mali, B. van Ginneken, M. Prokop and Y. der Graaf, "Coronary artery calcification scoring in low-dose ungated CT screening for lung cancer: interscan agreement", American Journal of Roentgenology, 2010;194(5):1244-1249.
- A. Bluekens, N. Karssemeijer, D. Beijerinck, J. Deurenberg, R. van Engen, M. Broeders and G. den Heeten, "Consequences of digital mammography in population-based breast cancer screening: initial changes and long-term impact on referral rates", European Radiology, 2010;20(9):2067-2073.
- S. Timp, C. Varela and N. Karssemeijer, "Computer-aided diagnosis with temporal analysis to improve radiologists' interpretation of mammographic mass lesions", IEEE Transactions on Information Technology in Biomedicine, 2010;14(3):803-808.
- E. van Rikxoort, M. Prokop, B. de Hoop, M. Viergever, J. Pluim and B. van Ginneken, "Automatic Segmentation of Pulmonary Lobes Robust Against Incomplete Fissures", IEEE Transactions on Medical Imaging, 2010;29(6):1286-1296.
- I. Išgum, A. Rutten, M. Prokop, M.Staring, S. Klein, J. Pluim, M. Viergever and B. van Ginneken, "Automated aortic calcium scoring on low-dose chest computed tomography", Medical Physics, 2010;37(2):714-723.
- I. Hartmann, R. Wittenberg and C. Schaefer-Prokop, "Imaging of acute pulmonary embolism using multi-detector CT angiography: an update on imaging technique and interpretation", European Journal of Radiology, 2010;74(1):40-49.
- P. Vos, T. Hambrock, J. Barentsz and H. Huisman, "Computer-assisted analysis of peripheral zone prostate lesions using T2-weighted and dynamic contrast enhanced T1-weighted MRI", Physics in Medicine and Biology, 2010;55(6):1719-1734.
- J. Patel, E. Sigmund, H. Rusinek, M. Oei, J. Babb and B. Taouli, "Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience", Journal of Magnetic Resonance Imaging, 2010;31(3):589-600.
- Y. Arzhaeva, M. Prokop, K. Murphy, E. van Rikxoort, P. de Jong, H. Gietema, M. Viergever and B. van Ginneken, "Automated estimation of progression of interstitial lung disease in CT images", Medical Physics, 2010;37(1):63-73.
- B. de Hoop, H. Gietema, S. van de Vorst, K. Murphy, R. van Klaveren and M. Prokop, "Pulmonary ground-glass nodules: increase in mass as an early indicator of growth", Radiology, 2010;255(1):199-206.
- F. Ciompi, O. Pujol, C. Gatta, O. Rodriguez-Leor, J. Mauri-Ferre and P. Radeva, "Fusing in-vitro and in-vivo intravascular ultrasound data for plaque characterization", International Journal of Cardiac Imaging, 2010;26(7):763-779.
- D. Yakar, T. Hambrock, H. Huisman, C. de Hulsbergen-van Kaa, E. van Lin, H. Vergunst, C. Hoeks, I. van Oort, J. Witjes, J. Barentsz and J. Fütterer, "Feasibility of 3T dynamic contrast-enhanced magnetic resonance-guided biopsy in localizing local recurrence of prostate cancer after external beam radiation therapy", Investigative Radiology, 2010;45(3):121-125.
- E. Tanck, J. Deenen, H. Huisman, J. Kooloos, H. Huizenga and N. Verdonschot, "An anatomically shaped lower body model for CT scanning of cadaver femurs", Physics in Medicine and Biology, 2010;55(2):N57-N62.
- T. Hambrock, D. Somford, C. Hoeks, S. Bouwense, H. Huisman, D. Yakar, I. van Oort, J. Witjes, J. Fütterer and J. Barentsz, "Magnetic resonance imaging guided prostate biopsy in men with repeat negative biopsies and increased prostate specific antigen", Journal of Urology, 2010;183(2):520-527.
- E. van Rikxoort, I. Išgum, Y. Arzhaeva, M. Staring, S. Klein, M. Viergever, J. Pluim and B. van Ginneken, "Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus", Medical Image Analysis, 2010;14(1):39-49.
- P. Jacobs, M. Prokop, Y. van der Graaf, M. Gondrie, K. Janssen, H. de Koning, I. Išgum, R. van Klaveren, M. Oudkerk, B. van Ginneken and W. Mali, "Comparing coronary artery calcium and thoracic aorta calcium for prediction of all-cause mortality and cardiovascular events on low-dose non-gated computed tomography in a high-risk population of heavy smokers", Atherosclerosis, 2010;209(2):455-462.
- R. Wittenberg, J. Peters, J. Sonnemans, M. Prokop and C. Schaefer-Prokop, "Computer-assisted detection of pulmonary embolism: evaluation of pulmonary CT angiograms performed in an on-call setting", European Radiology, 2010;20(4):801-806.
- M. Niemeijer, B. van Ginneken, M. Cree, A. Mizutani, G. Quellec, C. Sánchez, B. Zhang, R. Hornero, M. Lamard, C. Muramatsu, X. Wu, G. Cazuguel, J. You, A. Mayo, Q. Li, Y. Hatanaka, B. Cochener, C. Roux, F. Karray, M. Garcia, H. Fujita and M. Abràmoff, "Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs", IEEE Transactions on Medical Imaging, 2010;29(1):185-195.
- H. Gietema, P. Zanen, A. Schilham, B. van Ginneken, R. van Klaveren, M. Prokop and J. Lammers, "Distribution of emphysema in heavy smokers: impact on pulmonary function", Respiratory Medicine, 2010;104(1):76-82.
- D. Vukadinovic, T. van Walsum, R. Manniesing, S. Rozie, R. Hameeteman, T. de Weert, A. van der Lugt and W. Niessen, "Segmentation of the outer vessel wall of the common carotid artery in CTA", IEEE Transactions on Medical Imaging, 2010;29(1):65-76.
- H. Gietema, P. Zanen, A. Schilham, B. van Ginneken, R. van Klaveren, M. Prokop and J. Lammers, "Reply to Hochheggar et al", Respiratory Medicine, 2010;104(7):1074.
- C. Hoeks, J. Fütterer, D. Somford, I. van Oort, H. Huisman and J. Barentsz, "Multiparametric MRI for prostate cancer screening", Nederlands Tijdschrift voor Geneeskunde, 2009;153:B487.
- X. Artaechevarria, D. Pérez-Martin, M. Ceresa, G. de Biurrun, D. Blanco, L. Montuenga, B. van Ginneken, C. Ortiz-de-Solórzano and A. Muñoz-Barrutia, "Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT", Physics in Medicine and Biology, 2009;54(22):7009-7024.
- R. Brecheisen, B. Platel, A. Vilanova and B. ter Romeny, "Parameter sensitivity visualization for DTI fiber tracking", IEEE Transactions on Visualization and Computer Graphics, 2009;15(6):1441-1448.
- D. Mook-Kanamori, S. Holzhauer, L. Hollestein, B. Durmus, R. Manniesing, M. Koek, G. Boehm, E. van der Beek, A. Hofman, J. Witteman, M. Lequin and V. Jaddoe, "Abdominal fat in children measured by ultrasound and computed tomography", Ultrasound in Medicine and Biology, 2009;35(12):1938-1946.
- A. Mendrik, E. Vonken, A. Rutten, M. Viergever and B. van Ginneken, "Noise reduction in computed tomography scans using 3-d anisotropic hybrid diffusion with continuous switch", IEEE Transactions on Medical Imaging, 2009;28(10):1585-1594.
- M. Niemeijer, M. Abràmoff and B. van Ginneken, "Fast detection of the optic disc and fovea in color fundus photographs", Medical Image Analysis, 2009;13(6):859-870.
- C. Schaefer-Prokop and M. Uffmann, "Update on digital radiography", European Journal of Radiology, 2009;72(2):193.
- D. de Boo, M. Prokop, M. Uffmann, B. van Ginneken and C. Schaefer-Prokop, "Computer-aided detection (CAD) of lung nodules and small tumours on chest radiographs", European Journal of Radiology, 2009;72(2):218-225.
- M. Adriaensen, C. Schaefer-Prokop, D. Duyndam, B. Zonnenberg and M. Prokop, "Fatty foci in the myocardium in patients with tuberous sclerosis complex: common finding at CT", Radiology, 2009;253(2):359-363.
- N. Karssemeijer, A. Bluekens, D. Beijerinck, J. Deurenberg, M. Beekman, R. Visser, R. van Engen, A. Bartels-Kortland and M. Broeders, "Breast cancer screening results 5 years after introduction of digital mammography in a population-based screening program", Radiology, 2009;253(2):353-358.
- C. Schaefer-Prokop, D. Boo, M. Uffmann and M. Prokop, "DR and CR: Recent advances in technology", European Journal of Radiology, 2009;72(2):194-201.
- E. van Rikxoort, B. de Hoop, M. Viergever, M. Prokop and B. van Ginneken, "Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection", Medical Physics, 2009;36(7):2934-2947.
- R. Hupse and N. Karssemeijer, "Use of normal tissue context in computer-aided detection of masses in mammograms", IEEE Transactions on Medical Imaging, 2009;28(12):2033-2041.
- K. Murphy, B. van Ginneken, A. Schilham, B. de Hoop, H. Gietema and M. Prokop, "A Large Scale Evaluation of Automatic Pulmonary Nodule Detection in Chest CT using Local Image Features and k-Nearest-Neighbour Classification", Medical Image Analysis, 2009;13(5):757-770.
- M. Uffmann and C. Schaefer-Prokop, "Digital radiography: the balance between image quality and required radiation dose", European Journal of Radiology, 2009;72(2):202-208.
- B. van Ginneken, L. Hogeweg and M. Prokop, "Computer-aided diagnosis in chest radiography: beyond nodules", European Journal of Radiology, 2009;72(2):226-230.
- C. Sánchez, M. García, A. Mayo, M. López and R. Hornero, "Retinal image analysis based on mixture models to detect hard exudates", Medical Image Analysis, 2009;13(4):650-658.
- J. Iglesias and N. Karssemeijer, "Robust initial detection of landmarks in film-screen mammograms using multiple FFDM atlases", IEEE Transactions on Medical Imaging, 2009;28(11):1815-1824.
- M. García, C. Sánchez, J. Poza, M. López and R. Hornero, "Detection of hard exudates in retinal images using a radial basis function classifier", Annals of Biomedical Engineering, 2009;37(7):1448-1463.
- M. Nillesen, R. Lopata, W. de Boode, I. Gerrits, H. Huisman, J. Thijssen, L. Kapusta and C. de Korte, "In vivo validation of cardiac output assessment in non-standard 3D echocardiographic images", Physics in Medicine and Biology, 2009;54(7):1951-1962.
- E. Rollano-Hijarrubia, R. Manniesing and W. Niessen, "Selective deblurring for improved calcification visualization and quantification in carotid CT angiography: validation using micro-CT", IEEE Transactions on Medical Imaging, 2009;28(3):446-453.
- M. Adriaensen, C. Schaefer-Prokop, T. Stijnen, D. Duyndam, B. Zonnenberg and M. Prokop, "Prevalence of subependymal giant cell tumors in patients with tuberous sclerosis and a review of the literature", European Journal of Neurology, 2009;16(6):691-696.
- E. van Rikxoort, B. de Hoop, S. van de Vorst, M. Prokop and B. van Ginneken, "Automatic segmentation of pulmonary segments from volumetric chest CT scans", IEEE Transactions on Medical Imaging, 2009;28(4):621-630.
- T. Heimann, B. van Ginneken, M. Styner, Y. Arzhaeva, V. Aurich, C. Bauer, A. Beck, C. Becker, R. Beichel, G. Bekes, F. Bello, G. Binnig, H. Bischof, A. Bornik, P. Cashman, Y. Chi, A. Cordova, B. Dawant, M. Fidrich, J. Furst, D. Furukawa, L. Grenacher, J. Hornegger, D. Kainmuller, R. Kitney, H. Kobatake, H. Lamecker, T. Lange, J. Lee, B. Lennon, R. Li, S. Li, H. Meinzer, G. Nemeth, D. Raicu, A. Rau, E. van Rikxoort, M. Rousson, L. Rusko, K. Saddi, G. Schmidt, D. Seghers, A. Shimizu, P. Slagmolen, E. Sorantin, G. Soza, R. Susomboon, J. Waite, A. Wimmer and I. Wolf, "Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets", IEEE Transactions on Medical Imaging, 2009;28(8):1251-1265.
- M. Velikova, M. Samulski, P. Lucas and N. Karssemeijer, "Improved mammographic CAD performance using multi-view information: a Bayesian network framework", Physics in Medicine and Biology, 2009;54(5):1131-1147.
- M. Niemeijer, M. Abràmoff and B. van Ginneken, "Information fusion for diabetic retinopathy CAD in digital color fundus photographs", IEEE Transactions on Medical Imaging, 2009;28(5):775-785.
- I. Išgum, M. Staring, A. Rutten, M. Prokop, M. Viergever and B. van Ginneken, "Multi-Atlas-Based Segmentation With Local Decision Fusion - Application to Cardiac and Aortic Segmentation in CT Scans", IEEE Transactions on Medical Imaging, 2009;28:1000-1010.
- M. Staring, J. Pluim, B. de Hoop, S. Klein, B. van Ginneken, H. Gietema, G. Nossent, C. Schaefer-Prokop, S. van de Vorst and M. Prokop, "Image Subtraction Facilitates Assessment of Volume and Density Change in Ground-Glass Opacities in Chest CT", Investigative Radiology, 2009;44(2):61-66.
- B. de Hoop, H. Gietema, B. van Ginneken, P. Zanen, G. Groenewegen and M. Prokop, "A comparison of six software packages for evaluation of solid lung nodules using semi-automated volumetry: what is the minimum increase in size to detect growth in repeated CT examinations", European Radiology, 2009;19(4):800-808.
- C. van Niekerk, J. van der Laak, M. Börger, H. Huisman, J. Witjes, J. Barentsz and C. de Hulsbergen-van Kaa, "Computerized whole slide quantification shows increased microvascular density in pT2 prostate cancer as compared to normal prostate tissue", Prostate, 2009;69(1):62-69.
- M. García, C. Sánchez, M. López, D. Abásolo and R. Hornero, "Neural network based detection of hard exudates in retinal images", Computer Methods and Programs in Biomedicine, 2009;93(1):9-19.
- M. Demirci, B. Platel, A. Shokoufandeh, L. Florack and S. Dickinson, "The Representation and Matching of Images Using Top Points", Journal of Mathematical Imaging and Vision, 2009;35(2):103-116.
- Y. Arzhaeva, D. Tax and B. van Ginneken, "Dissimilarity-based classification in the absence of local ground truth: application to the diagnostic interpretation of chest radiographs", Pattern Recognition, 2009;42(9):1768-1776.
- M. Kallenberg and N. Karssemeijer, "Computer-aided detection of masses in full-field digital mammography using screen-film mammograms for training", Physics in Medicine and Biology, 2008;53(23):6879-6891.
- S. Armato and B. van Ginneken, "Anniversary paper: image processing and manipulation through the pages of Medical Physics", Medical Physics, 2008;35(10):4488-4500.
- C. Schaefer-Prokop and M. Prokop, "CTPA for the diagnosis of acute pulmonary embolism during pregnancy", European Radiology, 2008;18(12):2705-2708.
- T. Hambrock, J. Fütterer, H. Huisman, C. de Hulsbergen-van Kaa, J. van Basten, I. van Oort, J. Witjes and J. Barentsz, "Thirty-two-channel coil 3T magnetic resonance-guided biopsies of prostate tumor suspicious regions identified on multimodality 3T magnetic resonance imaging: technique and feasibility", Investigative Radiology, 2008;43(10):686-694.
- R. Manniesing, M. Viergever, A. van der Lugt and W. Niessen, "Cerebral arteries: fully automated segmentation from CT angiography--a feasibility study", Radiology, 2008;247(3):841-846.
- B. Lelieveldt and N. Karssemeijer, "Information Processing In Medical Imaging 2007", Medical Image Analysis, 2008;12(6):729-730.
- C. Schaefer-Prokop, U. Neitzel, H. Venema, M. Uffmann and M. Prokop, "Digital chest radiography: an update on modern technology, dose containment and control of image quality", European Radiology, 2008;18(9):1818-30.
- P. Vos, T. Hambrock, C. de Kaa, J. Fütterer, J. Barentsz and H. Huisman, "Computerized analysis of prostate lesions in the peripheral zone using dynamic contrast enhanced MRI", Medical Physics, 2008;35(3):888-899.
- B. Stoel, D. Parr, E. Bakker, H. Putter, J. Stolk, H. Gietema, A. Schilham, B. van Ginneken, R. van Klaveren, J. Lammers and M. Prokop, "Can the extent of low-attenuation areas on CT scans really demonstrate changes in the severity of emphysema?", Radiology, 2008;247(1):293-4; author reply 294.
- A. Eilertsen, N. Karssemeijer, P. Skaane, E. Qvigstad and P. Sandset, "Differential impact of conventional and low-dose oral hormone therapy, tibolone and raloxifene on mammographic breast density, assessed by an automated quantitative method", British Journal of Obstetrics and Gynaecology, 2008;115(6):773-779.
- J. Veltman, M. Stoutjesdijk, R. Mann, H. Huisman, J. Barentsz, J. Blickman and C. Boetes, "Contrast-enhanced magnetic resonance imaging of the breast: the value of pharmacokinetic parameters derived from fast dynamic imaging during initial enhancement in classifying lesions", European Radiology, 2008;18(6):1123-1133.
- E. van Rikxoort, B. van Ginneken, M. Klik and M. Prokop, "Supervised enhancement filters: application to fissure detection in chest CT scans", IEEE Transactions on Medical Imaging, 2008;27(1):1-10.
- M. Uffmann, C. Schaefer-Prokop and U. Neitzel, "[Balance of required dose and image quality in digital radiography]", Radiologe, 2008;48(3):249-257.
- P. Koopmans, R. Manniesing, W. Niessen, M. Viergever and M. Barth, "MR venography of the human brain using susceptibility weighted imaging at very high field strength", Magnetic Resonance Materials in Physics, Biology and Medicine, 2008;21(1-2):149-158.
- M. Abràmoff, M. Niemeijer, M. Suttorp-Schulten, M. Viergever, S. Russell and B. van Ginneken, "Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes", Diabetes Care, 2008;31(2):193-198.
- J. Poza, R. Hornero, J. Escudero, A. Fernández and C. Sánchez, "Regional analysis of spontaneous MEG rhythms in patients with Alzheimer's disease using spectral entropies", Annals of Biomedical Engineering, 2008;36(1):141-152.
- C. Sánchez, R. Hornero, M. López, M. Aboy, J. Poza and D. Abásolo, "A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis", Medical Engineering and Physics, 2008;30(3):350-357.
- B. van Ginneken, "Computer-Aided Diagnosis in Thoracic Computed Tomography", Imaging Decisions MRI, 2008;12(3):11-22.
- Y. Arzhaeva, M. Prokop, D. Tax, P. de Jong, C. Schaefer-Prokop and B. van Ginneken, "Computer-aided detection of interstitial abnormalities in chest radiographs using a reference standard based on computed tomography", Medical Physics, 2007;34(12):4798-4809.
- M. Stoutjesdijk, J. Veltman, H. Huisman, N. Karssemeijer, J. Barentsz, J. Blickman and C. Boetes, "Automated analysis of contrast enhancement in breast MRI lesions using mean shift clustering for ROI selection", Journal of Magnetic Resonance Imaging, 2007;26(3):606-614.
- H. Gietema, A. Schilham, B. van Ginneken, R. van Klaveren, J. Lammers and M. Prokop, "Monitoring of smoking-induced emphysema with CT in a lung cancer screening setting: detection of real increase in extent of emphysema", Radiology, 2007;244(3):890-897.
- S. Timp, C. Varela and N. Karssemeijer, "Temporal change analysis for characterization of mass lesions in mammography", IEEE Transactions on Medical Imaging, 2007;26(7):945-953.
- M. Nillesen, R. Lopata, I. Gerrits, L. Kapusta, H. Huisman, J. Thijssen and C. de Korte, "Segmentation of the heart muscle in 3-D pediatric echocardiographic images", Ultrasound in Medicine and Biology, 2007;33(9):1453-1462.
- W. Vogel, J. van Dalen, B. Wiering, H. Huisman, F. Corstens, T. Ruers and W. Oyen, "Evaluation of image registration in PET/CT of the liver and recommendations for optimized imaging", Journal of Nuclear Medicine, 2007;48(6):910-919.
- I. Išgum, A. Rutten, M. Prokop and B. van Ginneken, "Detection of coronary calcifications from computed tomography scans for automated risk assessment of coronary artery disease", Medical Physics, 2007;34(4):1450-1461.
- S. Heijmink, J. Fütterer, T. Hambrock, S. Takahashi, T. Scheenen, H. Huisman, C. de Hulsbergen-Van Kaa, B. Knipscheer, L. Kiemeney, J. Witjes and J. Barentsz, "Prostate cancer: body-array versus endorectal coil MR imaging at 3 T--comparison of image quality, localization, and staging performance", Radiology, 2007;244(1):184-195.
- J. van Dalen, A. Hoffmann, V. Dicken, W. Vogel, B. Wiering, T. Ruers, N. Karssemeijer and W. Oyen, "A novel iterative method for lesion delineation and volumetric quantification with FDG PET", Nuclear Medicine Communications, 2007;28(6):485-493.
- M. Niemeijer, B. van Ginneken, S. Russel, M. Suttorp-Schulten and M. Abràmoff, "Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis", Investigative Ophthalmology and Visual Science, 2007;48(5):2260-2267.
- P. Peloschek, J. Sailer, M. Weber, C. Herold, M. Prokop and C. Schaefer-Prokop, "Pulmonary nodules: sensitivity of maximum intensity projection versus that of volume rendering of 3D multidetector CT data", Radiology, 2007;243(2):561-569.
- S. van Engeland and N. Karssemeijer, "Combining two mammographic projections in a computer aided mass detection method", Medical Physics, 2007;34(3):898-905.
- R. Manniesing, M. Viergever and W. Niessen, "Vessel axis tracking using topology constrained surface evolution", IEEE Transactions on Medical Imaging, 2007;26(3):309-316.
- A. Bankier, C. Schaefer-Prokop, V. Maertelaer, D. Tack, P. Jaksch, W. Klepetko and P. Gevenois, "Air trapping: comparison of standard-dose and simulated low-dose thin-section CT techniques", Radiology, 2007;242(3):898-906.
- M. Niemeijer, M. Abràmoff and B. van Ginneken, "Segmentation of the optic disc, macula and vascular arch in fundus photographs", IEEE Transactions on Medical Imaging, 2007;26(1):116-127.
- J. Fütterer, T. Scheenen, S. Heijmink, H. Huisman, C. de Kaa, J. Witjes, A. Heerschap and J. Barentsz, "Standardized threshold approach using three-dimensional proton magnetic resonance spectroscopic imaging in prostate cancer localization of the entire prostate", Investigative Radiology, 2007;42(2):116-122.
- P. Snoeren and N. Karssemeijer, "Gray-scale and geometric registration of full-field digital and film-screen mammograms", Medical Image Analysis, 2007;11(2):146-156.
- A. Roelofs, N. Karssemeijer, N. Wedekind, C. Beck, S. van Woudenberg, P. Snoeren, J. Hendriks, M. del Turco, N. Bjurstam, H. Junkermann, D. Beijerinck, B. Séradour and C. Evertsz, "Importance of comparison of current and prior mammograms in breast cancer screening", Radiology, 2007;242(1):70-77.
- J. Staal, B. van Ginneken and M. Viergever, "Automatic rib segmentation and labeling in computed tomography scans using a general framework for detection, recognition and segmentation of objects in volumetric data", Medical Image Analysis, 2007;11(1):35-46.
- N. Karssemeijer, J. Otten, H. Rijken and R. Holland, "Computer aided detection of masses in mammograms as decision support", British Journal of Radiology, 2006;79 Spec No 2:S123-S126.
- M. Niemeijer, M. Abràmoff and B. van Ginneken, "Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening", Medical Image Analysis, 2006;10(6):888-898.
- S. Selvan, C. Xavier, N. Karssemeijer, J. Sequeira, R. Cherian and B. Dhala, "Parameter estimation in stochastic mammogram model by heuristic optimization techniques", IEEE Transactions on Information Technology in Biomedicine, 2006;10(4):685-695.
- S. van Engeland, S. Timp and N. Karssemeijer, "Finding corresponding regions of interest in mediolateral oblique and craniocaudal mammographic views", Medical Physics, 2006;33(9):3203-3212.
- J. Fütterer, S. Heijmink, T. Scheenen, J. Veltman, H. Huisman, P. Vos, C. Hulsbergen-van de Kaa, J. Witjes, P. Krabbe, A. Heerschap and J. Barentsz, "Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging", Radiology, 2006;241(2):449-458.
- I. Sluimer, M. Prokop, I. Hartmann and B. van Ginneken, "Automated classification of hyperlucency, fibrosis, ground glass, solid and focal lesions in high resolution CT of the lung", Medical Physics, 2006;33(7):2610-2620.
- R. Manniesing, M. Viergever and W. Niessen, "Vessel enhancing diffusion: a scale space representation of vessel structures", Medical Image Analysis, 2006;10(6):815-825.
- M. Loog, B. van Ginneken and A. Schilham, "Filter learning: application to suppression of bony structures from chest radiographs", Medical Image Analysis, 2006;10:826-840.
- M. Loog and B. van Ginneken, "Segmentation of the posterior ribs in chest radiographs using iterated contextual pixel classification", IEEE Transactions on Medical Imaging, 2006;25:602-11.
- E. van Lin, J. Fütterer, S. Heijmink, L. van der Vight, A. Hoffmann, P. van Kollenburg, H. Huisman, T. Scheenen, J. Witjes, J. Leer, J. Barentsz and A. Visser, "IMRT boost dose planning on dominant intraprostatic lesions: gold marker-based three-dimensional fusion of CT with dynamic contrast-enhanced and 1H-spectroscopic MRI", International Journal of Radiation Oncology, Biology, Physics, 2006;65(1):291-303.
- A. Schilham, B. van Ginneken, H. Gietema and M. Prokop, "Local noise weighted filtering for emphysema scoring of low-dose CT images", IEEE Transactions on Medical Imaging, 2006;25:451-463.
- I. Sluimer, A. Schilham, M. Prokop and B. van Ginneken, "Computer analysis of computed tomography scans of the lung: a survey", IEEE Transactions on Medical Imaging, 2006;25(4):385-405.
- S. van Engeland, P. Snoeren, H. Huisman, C. Boetes and N. Karssemeijer, "Volumetric breast density estimation from full-field digital mammograms", IEEE Transactions on Medical Imaging, 2006;25(3):273-282.
- R. Hornero, D. Abásolo, N. Jimeno, C. Sánchez, J. Poza and M. Aboy, "Variability, regularity, and complexity of time series generated by schizophrenic patients and control subjects", IEEE Transactions on Biomedical Engineering, 2006;53(2):210-218.
- C. Varela, S. Timp and N. Karssemeijer, "Use of border information in the classification of mammographic masses", Physics in Medicine and Biology, 2006;51(2):425-441.
- A. Schilham, B. van Ginneken and M. Loog, "A computer-aided diagnosis system for detection of lung nodules in chest radiographs with an evaluation on a public database", Medical Image Analysis, 2006;10:247-258.
- R. Manniesing, B. Velthuis, M. van Leeuwen, I. van der Schaaf, P. van Laar and W. Niessen, "Level set based cerebral vasculature segmentation and diameter quantification in CT angiography", Medical Image Analysis, 2006;10(2):200-214.
- A. Roelofs, S. van Woudenberg, J. Otten, J. Hendriks, A. Bödicker, C. Evertsz and N. Karssemeijer, "Effect of soft-copy display supported by CAD on mammography screening performance", European Radiology, 2006;16(1):45-52.
- S. Timp and N. Karssemeijer, "Interval change analysis to improve computer aided detection in mammography", Medical Image Analysis, 2006;10(1):82-95.
- B. van Ginneken, M. Stegmann and M. Loog, "Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database", Medical Image Analysis, 2006;10(1):19-40.
- J. Reinhardt, B. van Ginneken and M. Sonka, "Special Issue on Pulmonary Imaging", IEEE Transactions on Medical Imaging, 2006;25(4):381-384.
- C. Schaefer-Prokop and M. Prokop, "MDCT for the diagnosis of acute pulmonary embolism", European Radiology, 2005;15 Suppl 4:D37-D41.
- J. Fütterer, M. Engelbrecht, H. Huisman, G. Jager, C. de Hulsbergen-van Kaa, J. Witjes and J. Barentsz, "Staging prostate cancer with dynamic contrast-enhanced endorectal MR imaging prior to radical prostatectomy: experienced versus less experienced readers", Radiology, 2005;237(2):541-549.
- S. Timp, S. van Engeland and N. Karssemeijer, "A regional registration method to find corresponding mass lesions in temporal mammogram pairs", Medical Physics, 2005;32(8):2629-2638.
- I. Sluimer, M. Prokop and B. van Ginneken, "Toward automated segmentation of the pathological lung in CT", IEEE Transactions on Medical Imaging, 2005;24(8):1025-1038.
- H. Huisman, J. Fütterer, E. van Lin, A. Welmers, T. Scheenen, J. van Dalen, A. Visser, J. Witjes and J. Barentsz, "Prostate cancer: precision of integrating functional MR imaging with radiation therapy treatment by using fiducial gold markers", Radiology, 2005;236(1):311-317.
- D. Abásolo, R. Hornero, P. Espino, J. Poza, C. Sánchez and R. de la Rosa, "Analysis of regularity in the EEG background activity of Alzheimer's disease patients with Approximate Entropy", Clinical Neurophysiology, 2005;116(8):1826-1834.
- M. Stoutjesdijk, J. Fütterer, C. Boetes, L. van Die, G. Jager and J. Barentsz, "Variability in the description of morphologic and contrast enhancement characteristics of breast lesions on magnetic resonance imaging", Investigative Radiology, 2005;40(6):355-362.
- J. Otten, N. Karssemeijer, J. Hendriks, J. Groenewoud, J. Fracheboud, A. Verbeek, H. de Koning and R. Holland, "Effect of recall rate on earlier screen detection of breast cancers based on the Dutch performance indicators", Journal of the National Cancer Institute, 2005;97(10):748-754.
- C. Varela, N. Karssemeijer, J. Hendriks and R. Holland, "Use of prior mammograms in the classification of benign and malignant masses", European Journal of Radiology, 2005;56(2):248-255.
- M. Niemeijer, B. van Ginneken, J. Staal, M. Suttorp-Schulten and M. Abràmoff, "Automatic Detection of Red Lesions in Digital Color Fundus Photographs", IEEE Transactions on Medical Imaging, 2005;24(5):584-592.
- M. Uffmann, U. Neitzel, M. Prokop, N. Kabalan, M. Weber, C. Herold and C. Schaefer-Prokop, "Flat-panel-detector chest radiography: effect of tube voltage on image quality", Radiology, 2005;235(2):642-650.
- M. Uffmann, M. Prokop, E. Eisenhuber, M. Fuchsjäger, M. Weber and C. Schaefer-Prokop, "Computed radiography and direct radiography: influence of acquisition dose on the detection of simulated lung lesions", Investigative Radiology, 2005;40(5):249-256.
- M. Memarsadeghi, G. Heinz-Peer, T. Helbich, C. Schaefer-Prokop, G. Kramer, M. Scharitzer and M. Prokop, "Unenhanced multi-detector row CT in patients suspected of having urinary stone disease: effect of section width on diagnosis", Radiology, 2005;235(2):530-536.
- C. Balassy, M. Prokop, M. Weber, J. Sailer, C. Herold and C. Schaefer-Prokop, "Flat-panel display (LCD) versus high-resolution gray-scale display (CRT) for chest radiography: an observer preference study", American Journal of Roentgenology, 2005;184(3):752-756.
- M. Uffmann, M. Prokop, W. Kupper, T. Mang, V. Fiedler and C. Schaefer-Prokop, "Soft-copy reading of digital chest radiographs: effect of ambient light and automatic optimization of monitor luminance", Investigative Radiology, 2005;40(3):180-185.
- W. Vogel, J. van Dalen, H. Huisman, W. Oyen and N. Karssemeijer, "Sliced alternating DICOM series: convenient visualisation of image fusion on PACS", European Journal of Nuclear Medicine and Molecular Imaging, 2005;32(2):247-248.
- E. van Lin, L. van der Vight, J. Witjes, H. Huisman, J. Leer and A. Visser, "The effect of an endorectal balloon and off-line correction on the interfraction systematic and random prostate position variations: a comparative study", International Journal of Radiation Oncology, Biology, Physics, 2005;61(1):278-288.
- E. Oschatz, M. Prokop, M. Scharitzer, M. Weber, C. Balassy and C. Schaefer-Prokop, "Comparison of liquid crystal versus cathode ray tube display for the detection of simulated chest lesions", European Radiology, 2005;15(7):1472-6.
- M. Loog, B. van Ginneken and R. Duin, "Dimensionality reduction of image features using the canonical contextual correlation projection", Pattern Recognition, 2005;38:2409-2418.
- T. Veninga, H. Huisman, R. van der Maazen and H. Huizenga, "Clinical validation of the normalized mutual information method for registration of CT and MR images in radiotherapy of brain tumors", Journal of Applied Clinical Medical Physics, 2004;5(3):66-79.
- J. van Dalen, W. Vogel, H. Huisman, W. Oyen, G. Jager and N. Karssemeijer, "Accuracy of rigid CT-FDG-PET image registration of the liver", Physics in Medicine and Biology, 2004;49(23):5393-5405.
- J. Fütterer, T. Scheenen, H. Huisman, D. Klomp, F. van Dorsten, C. de Hulsbergen-van Kaa, J. Witjes, A. Heerschap and J. Barentsz, "Initial experience of 3 tesla endorectal coil magnetic resonance imaging and 1H-spectroscopic imaging of the prostate", Investigative Radiology, 2004;39(11):671-680.
- P. Snoeren and N. Karssemeijer, "Thickness correction of mammographic images by means of a global parameter model of the compressed breast", IEEE Transactions on Medical Imaging, 2004;23(7):799-806.
- S. Timp and N. Karssemeijer, "A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammography", Medical Physics, 2004;31(5):958-971.
- M. Uffmann, C. Schaefer-Prokop, U. Neitzel, M. Weber, C. Herold and M. Prokop, "Skeletal applications for flat-panel versus storage-phosphor radiography: effect of exposure on detection of low-contrast details", Radiology, 2004;231(2):506-514.
- M. Uffmann and C. Schaefer-Prokop, "[Radiological diagnostics of Hodgkin- and non-Hodgkin lymphomas of the thorax]", Radiologe, 2004;44(5):444-456.
- J. Staal, M. Abràmoff, M. Niemeijer, M. Viergever and B. van Ginneken, "Ridge Based Vessel Segmentation in Color Images of the Retina", IEEE Transactions on Medical Imaging, 2004;23(4):501-509.
- M. de Bruijne, B. van Ginneken, M. Viergever and W. Niessen, "Interactive segmentation of abdominal aortic aneurysms in CTA images", Medical Image Analysis, 2004;8(2):127-138.
- I. Išgum, B. van Ginneken and M. Olree, "Automatic detection of calcifications in the aorta from CT scans of the abdomen: 3D computer-aided diagnosis", Academic Radiology, 2004;11:247-257.
- K. McLoughlin, P. Bones and N. Karssemeijer, "Noise equalization for detection of microcalcification clusters in direct digital mammogram images", IEEE Transactions on Medical Imaging, 2004;23(3):313-320.
- R. Manniesing, R. Kleihorst, A. van der Avoird and E. Hendriks, "Power analysis of a general convolution algorithm mapped on a linear processor array", Journal of {VLSI} Signal Processing Systems, 2004;37(1):5-19.
- J. Sailer, M. Prokop, U. Neitzel, M. Weber, P. Peloschek and C. Schaefer-Prokop, "Comparison of an automatic versus a semiautomatic mode for gray-scale adaptation for digital chest radiography", Investigative Radiology, 2004;39(6):325-33.
- I. Sluimer, P. van Waes, M. Viergever and B. van Ginneken, "Computer-aided diagnosis in high-resolution CT of the lungs", Medical Physics, 2003;30(12):3081-3090.
- S. van Engeland, P. Snoeren, J. Hendriks and N. Karssemeijer, "A comparison of methods for mammogram registration", IEEE Transactions on Medical Imaging, 2003;22(11):1436-1444.
- M. Fuchsjäger, C. Schaefer-Prokop, E. Eisenhuber, P. Homolka, M. Weber, M. Funovics and M. Prokop, "Impact of ambient light and window settings on the detectability of catheters on soft-copy display of chest radiographs at bedside", American Journal of Roentgenology, 2003;181(5):1415-1421.
- M. Engelbrecht, H. Huisman, R. Laheij, G. Jager, G. van Leenders, C. de Hulsbergen-van Kaa, J. de la Rosette, J. Blickman and J. Barentsz, "Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging", Radiology, 2003;229(1):248-254.
- M. Prokop, U. Neitzel and C. Schaefer-Prokop, "Principles of image processing in digital chest radiography", Journal of Thoracic Imaging, 2003;18(3):148-164.
- C. Schaefer-Prokop, M. Uffmann, E. Eisenhuber and M. Prokop, "Digital radiography of the chest: detector techniques and performance parameters", Journal of Thoracic Imaging, 2003;18(3):124-137.
- C. Schaefer-Prokop, M. Uffmann, J. Sailer, N. Kabalan, C. Herold and M. Prokop, "[Digital thorax radiography: flat-panel detector or storage phosphor plates]", Radiologe, 2003;43(5):351-361.
- E. Eisenhuber, A. Stadler, M. Prokop, M. Fuchsjager, M. Weber and C. Schaefer-Prokop, "Detection of monitoring materials on bedside chest radiographs with the most recent generation of storage phosphor plates: dose increase does not improve detection performance", Radiology, 2003;227(1):216-221.
- N. Karssemeijer, J. Otten, A. Verbeek, J. Groenewoud, H. de Koning, J. Hendriks and R. Holland, "Computer-aided detection versus independent double reading of masses on mammograms", Radiology, 2003;227(1):192-200.
- B. van Ginneken, "Computerized detection of interstitial disease in chest radiographs", Medical Imaging Technology, 2003;21:15-20.
- B. van Ginneken and B. ter Romeny, "Multi-scale texture classification from generalized locally orderless images", Pattern Recognition, 2003;36:899-911.
- C. Schaefer-Prokop and J. Klein, "Digital chest radiography", Journal of Thoracic Imaging, 2003;18(3):123.
- I. Išgum and B. van Ginneken, "CT segmentation programs extract calcifications", Diagnostic Imaging Europe, 2003;19(6):11-16.
- C. Schaefer-Prokop, M. Uffmann and A. Stadler, "[Digital radiography: from storage phosphor plates to direct detector systems]", Wiener Medizinische Wochenschrift Supplementum, 2002(113):30-34.
- B. van Ginneken, A. Frangi, J. Staal, B. ter Romeny and M. Viergever, "Active shape model segmentation with optimal features", IEEE Transactions on Medical Imaging, 2002;21(8):924-933.
- S. Puig, C. Schaefer-Prokop, T. Mang and M. Prokop, "Single- and multi-slice spiral computed tomography of the paediatric kidney", European Journal of Radiology, 2002;43(2):139-145.
- C. Engelke, C. Schaefer-Prokop, E. Schirg, J. Freihorst, S. Grubnic and M. Prokop, "High-resolution CT and CT angiography of peripheral pulmonary vascular disorders", Radiographics, 2002;22(4):739-764.
- C. Schaefer-Prokop and M. Prokop, "New imaging techniques in the treatment guidelines for lung cancer", European Respiratory Journal Supplement, 2002;35:71s-83s.
- B. van Ginneken, S. Katsuragawa, B. ter Haar Romeny, K. Doi and M. Viergever, "Automatic detection of abnormalities in chest radiographs using local texture analysis", IEEE Transactions on Medical Imaging, 2002;21(2):139-149.
- B. van Ginneken, B. ter Haar Romeny and M. Viergever, "Computer-aided diagnosis in chest radiography: a survey", IEEE Transactions on Medical Imaging, 2001;20(12):1228-1241.
- M. Giger, N. Karssemeijer and S. Armato, "Computer-aided diagnosis in medical imaging", IEEE Transactions on Medical Imaging, 2001;20(12):1205-1208.
- M. Stoutjesdijk and J. Barentsz, "Prophylactic mastectomy in carriers of BRCA mutations", New England Journal of Medicine, 2001;345(20):1499; author reply 1499-1499..
- C. Schaefer-Prokop, I. Nöbauer, C. Weidekamm and E. Katz-Papatheophilou, "[Radiological diagnosis of adult respiratory distress syndrome (ARDS)]", Wiener Medizinische Wochenschrift, 2001;151(21-23):520-523.
- M. Stoutjesdijk, C. Boetes, G. Jager, L. Beex, P. Bult, J. Hendriks, R. Laheij, L. Massuger, L. van Die, T. Wobbes and J. Barentsz, "Magnetic resonance imaging and mammography in women with a hereditary risk of breast cancer", Journal of the National Cancer Institute, 2001;93(14):1095-1102.
- C. Schaefer-Prokop, E. Eisenhuber, M. Fuchsjäger, S. Puig and M. Prokop, "[Current developments in the area of digital thoracic radiography]", Radiologe, 2001;41(3):230-239.
- C. Schaefer-Prokop, M. Prokop, D. Fleischmann and C. Herold, "High-resolution CT of diffuse interstitial lung disease: key findings in common disorders", European Radiology, 2001;11(3):373-392.
- H. Huisman, M. Engelbrecht and J. Barentsz, "Accurate estimation of pharmacokinetic contrast-enhanced dynamic MRI parameters of the prostate", Journal of Magnetic Resonance Imaging, 2001;13(4):607-614.
- E. Boss, L. Massuger, L. Pop, L. Verhoef, H. Huisman, H. Boonstra and J. Barentsz, "Post-radiotherapy contrast enhancement changes in fast dynamic MRI of cervical carcinoma", Journal of Magnetic Resonance Imaging, 2001;13(4):600-606.
- G. te Brake and N. Karssemeijer, "Segmentation of suspicious densities in digital mammograms", Medical Physics, 2001;28(2):259-266.
- H. Huisman, M. Engelbrecht and J. Barentsz, "Accurate estimation of pharmacokinetic contrast-enhanced dynamic MRI parameters of the prostate", Journal of Magnetic Resonance Imaging, 2001;13(4):607-614.
- W. Veldkamp, N. Karssemeijer, J. Otten and J. Hendriks, "Automated classification of clustered microcalcifications into malignant and benign types", Medical Physics, 2000;27(11):2600-2608.
- B. van Ginneken and B. ter Romeny, "Automatic segmentation of lung fields in chest radiographs", Medical Physics, 2000;27:2445-2455.
- W. Veldkamp and N. Karssemeijer, "Normalization of local contrast in mammograms", IEEE Transactions on Medical Imaging, 2000;19(7):731-738.
- G. te Brake, N. Karssemeijer and J. Hendriks, "An automatic method to discriminate malignant masses from normal tissue in digital mammograms", Physics in Medicine and Biology, 2000;45(10):2843-2857.
- J. van der Laak, M. Pahlplatz, A. Hanselaar and P. de Wilde, "Hue-saturation-density (HSD) model for stain recognition in digital images from transmitted light microscopy", Cytometry, 2000;39(4):275-284.
- B. van Ginneken and B. ter Romeny, "Applications of locally orderless images", Journal of Visual Communication and Image Representation, 2000;11:196-208.
- C. van Gils, J. Hendriks, R. Holland, N. Karssemeijer, J. Otten, H. Straatman and A. Verbeek, "Changes in mammographic breast density and concomitant changes in breast cancer risk", European Journal of Cancer Prevention, 1999;8(6):509-515.
- N. Karssemeijer, W. Veldkamp, G. te Brake and J. Hendriks, "[Reading screening mammograms with the help of neural networks]", Nederlands Tijdschrift voor Geneeskunde, 1999;143(45):2232-2236.
- J. Barentsz, M. Engelbrecht, G. Jager, J. Witjes, J. de LaRosette, B. van Der Sanden, H. Huisman and A. Heerschap, "Fast dynamic gadolinium-enhanced MR imaging of urinary bladder and prostate cancer", Journal of Magnetic Resonance Imaging, 1999;10(3):295-304.
- G. te Brake and N. Karssemeijer, "Single and multiscale detection of masses in digital mammograms", IEEE Transactions on Medical Imaging, 1999;18(7):628-639.
- C. Schaefer-Prokop, "Chest radiography: potential and limitations", Minerva Anestesiol, 1999;65(5 Suppl 1):10-11.
- K. Dana, B. van Ginneken, S. Nayar and J. Koenderink, "Reflectance and texture of real world surfaces", ACM Transactions on Graphics, 1999;18(1):1-34.
- B. van Ginneken, J. Koenderink and K. Dana, "Texture histograms as a function of irradiation and viewing direction", International Journal of Computer Vision, 1999;31(2-3):169-184.
- B. van Ginneken, M. Stavridi and J. Koenderink, "Diffuse and specular reflectance from rough surfaces", Applied Optics, 1998;37(1):130-139.
- H. Huisman and J. Thijssen, "An in vivo ultrasonic model of liver parenchyma", IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1998;45(3):739-750.
- H. Huisman and J. Thijssen, "Adaptive texture feature extraction with application to ultrasonic image analysis", Ultrasonic Imaging, 1998;20(2):132-148.
- G. te Brake, N. Karssemeijer and J. Hendriks, "Automated detection of breast carcinomas not detected in a screening program", Radiology, 1998;207(2):465-471.
- N. Karssemeijer, "Automated classification of parenchymal patterns in mammograms", Physics in Medicine and Biology, 1998;43(2):365-378.
- H. Huisman, J. Thijssen, D. Wagener and G. Rosenbusch, "Quantitative ultrasonic analysis of liver metastases", Ultrasound in Medicine and Biology, 1998;24(1):67-77.
- M. Stavridi, B. van Ginneken and J. Koenderink, "Surface bidirectional reflection distribution function and the texture of bricks and tiles", Applied Optics, 1997;36(16):3717-3725.
- M. Prokop and C. Schaefer-Prokop, "Digital image processing", European Radiology, 1997;7(11):S73-S82.
- C. Schaefer-Prokop and M. Prokop, "Storage phosphor radiography", European Radiology, 1997;7 Suppl 3:S58-S65.
- N. Karssemeijer and J. Hendriks, "Computer-assisted reading of mammograms", European Radiology, 1997;7(5):743-748.
- M. Prokop, H. Shin, A. Schanz and C. Schaefer-Prokop, "Use of maximum intensity projections in CT angiography: a basic review", Radiographics, 1997;17(2):433-451.
- M. Prokop, C. Schaefer-Prokop and M. Galanski, "Spiral CT angiography of the abdomen", Abdominal Imaging, 1997;22(2):143-153.
- C. Schaefer-Prokop and M. Prokop, "Digital radiography of the chest: comparison of the selenium detector with other imaging systems", Medica Mundi, 1997;41(1):2-11.
- N. Karssemeijer and G. te Brake, "Detection of stellate distortions in mammograms", IEEE Transactions on Medical Imaging, 1996;15(5):611-619.
- H. Huisman and J. Thijssen, "Precision and accuracy of acoustospectrographic parameters", Ultrasound in Medicine and Biology, 1996;22(7):855-871.
- J. Barentsz, G. Jager, P. van Vierzen, J. Witjes, S. Strijk, H. Peters, N. Karssemeijer and S. Ruijs, "Staging urinary bladder cancer after transurethral biopsy: value of fast dynamic contrast-enhanced MR imaging", Radiology, 1996;201(1):185-193.
- C. Schaefer-Prokop, M. Prokop, A. Schmidt, U. Neitzel and M. Galanski, "Selenium radiography versus storage phosphor and conventional radiography in the detection of simulated chest lesions", Radiology, 1996;201(1):45-50.
- M. Prokop, C. Schaefer-Prokop and M. Galanski, "[Spiral CT of the lung. Technique, findings, value]", Radiologe, 1996;36(6):457-469.
- N. Karssemeijer and M. Thijssen, "Determination of contrast-detail curves of mammography systems by automated image analysis", Digital Mammography, 1996;96:155-160.
- C. Olbricht, K. Paul, M. Prokop, A. Chavan, C. Schaefer-Prokop, K. Jandeleit, K. Koch and M. Galanski, "Minimally invasive diagnosis of renal artery stenosis by spiral computed tomography angiography", Kidney International, 1995;48(4):1332-1337.
- A. Leppert, M. Prokop, C. Schaefer-Prokop and M. Galanski, "Detection of simulated chest lesions: comparison of a conventional screen-film combination, an asymmetric screen-film system, and storage phosphor radiography", Radiology, 1995;195(1):259-263.
- T. de Rooij, J. Oestmann, L. Schultze Kool, H. Vrooman, M. Prokop and C. Schaefer, "Application of AMBER in single- and dual-energy digital imaging: improvement in noise level and display dynamic range", Radiographics, 1994;14(2):407-414.
- A. Berkhoff, H. Huisman, J. Thijssen, E. Jacobs and R. Homan, "Fast scan conversion algorithms for displaying ultrasound sector images", Ultrasonic Imaging, 1994;16(2):87-108.
- W. Kalender, K. Wedding, A. Polacin, M. Prokop, C. Schaefer-Prokop and M. Galanski, "[Basic principles of vascular imaging with spiral CT]", Aktuelle Radiologie, 1994;4(6):287-297.
- M. Galanski, M. Prokop, A. Chavan, C. Schaefer, K. Jandeleit and C. Olbricht, "[Accuracy of CT angiography in the diagnosis of renal artery stenosis]", RöFo, 1994;161(6):519-525.
- N. Karssemeijer, J. Frieling and J. Hendriks, "Spatial resolution in digital mammography", Investigative Radiology, 1993;28(5):413-419.
- M. Prokop, C. Schaefer, J. Oestmann and M. Galanski, "Improved parameters for unsharp mask filtering of digital chest radiographs", Radiology, 1993;187(2):521-526.
- C. Schaefer and M. Prokop, "Storage phosphor radiography of the chest", Radiology, 1993;186(2):314-315.
- M. Galanski, M. Prokop, A. Chavan, C. Schaefer, K. Jandeleit and J. Nischelsky, "Renal arterial stenoses: spiral CT angiography", Radiology, 1993;189(1):185-192.
- A. Chavan, M. Galanski, K. Jandeleit, M. Prokop and C. Schaefer, "The kissing balloons technique. Simultaneous dilatation of stenoses of branch arteries at the bifurcation of the renal artery", Acta Radiologica, 1993;34(5):486-488.
- T. Graeter, C. Schaefer, M. Prokop and J. Laas, "Three-dimensional vascular imaging--an additional diagnostic tool", Thoracic and Cardiovascular Surgeon, 1993;41(3):183-185.
- M. Galanski, A. Chavan, M. Prokop, C. Schaefer and J. Harms, "Current status of the imaging modalities in the pre- and postoperative diagnostic workup of liver transplant patients", Bildgebung, 1993;60(2):56-62.
- M. Prokop, C. Schaefer, W. Kalender, A. Polacin and M. Galanski, "[Vascular imaging with spiral-CT. The path to CT-angiography]", Radiologe, 1993;33(12):694-704.
- N. Karssemeijer, "Adaptive noise equalization and recognition of microcalcification clusters in mammograms", Int J Patt Recogn Artif Intell, 1993;7:1357-1375.
- M. Galanski, M. Prokop, E. Thorns, J. Oestmann, S. Reichelt, B. Haubitz, H. Milbradt, A. Gräser, L. Verner and C. Schaefer, "The visibility of a central venous catheter using digital luminescence radiography in intensive care radiology", RöFo, 1992;156(1):68-72.
- C. Schaefer, M. Prokop, J. Oestmann, W. Wiesmann, B. Haubitz, A. Meschede, S. Reichelt, E. Schirg, H. Stender and M. Galanski, "Impact of hard-copy size on observer performance in digital chest radiography", Radiology, 1992;184(1):77-81.
- H. Nab, N. Karssemeijer, L. Erning and J. Hendriks, "Comparison of digital and conventional mammography: a ROC study of 270 mammograms", Medical Informatics, 1992;17(2):125-131.
- M. Galanski, E. Schmoll, S. Reichelt, G. Böhmer, M. Prokop, C. Schaefer, A. Schüler, B. Ringe, F. Schmidt and H. Schmoll, "Chemoembolization of hepatocellular carcinoma in cases of isolated liver involvement", Radiologe, 1992;32(2):49-55.
- N. Karssemeijer, "Stochastic model for automated detection of calcifications in digital mammograms", Image and Vision Computing, 1992;10(6):369 - 375.
- J. Oestmann, S. Reichelt, M. Prokop, C. Schaefer and M. Galanski, "Digital projection radiography", Radiologe, 1991;31(1):1-7.
- J. Oestmann, M. Prokop, C. Schaefer and M. Galanski, "Hardware and software artifacts in storage phosphor radiography", Radiographics, 1991;11(5):795-805.
- C. Schaefer, M. Prokop and M. Galanski, "[Drug-induced changes in the lungs]", Radiologe, 1990;30(12):564-573.
- H. Nab, N. Karssemeijer, L. van Erning, A. Verbeek and J. Hendriks, "Digital mammography is very useful in mass screening of breast cancer", Nederlands Tijdschrift voor Geneeskunde, 1990;134(49):2383-2387.
- N. Karssemeijer, "A statistical method for automatic labeling of tissues in medical images", Machine Vision and Applications, 1990;3(2):75-86.
- N. Karssemeijer, "A relaxation method for image segmentation using a spatially dependent stochastic model", Pattern Recognition Letters, 1990;11(1):13 - 23.
- N. Karssemeijer, L. van Erning and E. Eijkman, "Recognition of organs in CT-image sequences: a model guided approach", Computers and Biomedical Research, 1988;21(5):434-448.
- P. Vink and N. Karssemeijer, "Low back muscle activity and pelvic rotation during walking", Anatomy and Embryology, 1988;178(5):455-460.
- N. Karssemeijer and E. Eijkman, "Modelling and representation of myocardial perfusion images for the evaluation of diagnostic properties", Medical and Biological Engineering and Computing, 1987;25(2):181-188.
Preprints
- E. Sogancioglu, B. van Ginneken, F. Behrendt, M. Bengs, A. Schlaefer, M. Radu, D. Xu, K. Sheng, F. Scalzo, E. Marcus, S. Papa, J. Teuwen, E. Scholten, S. Schalekamp, N. Hendrix, C. Jacobs, W. Hendrix, C. Sánchez and K. Murphy, "Nodule detection and generation on chest X-rays: NODE21 Challenge", arXiv:2401.02192, 2024.
- E. de la Rosa, M. Reyes, S. Liew, A. Hutton, R. Wiest, J. Kaesmacher, U. Hanning, A. Hakim, R. Zubal, W. Valenzuela, D. Robben, D. Sima, V. Anania, A. Brys, J. Meakin, A. Mickan, G. Broocks, C. Heitkamp, S. Gao, K. Liang, Z. Zhang, M. Siddiquee, A. Myronenko, P. Ashtari, S. Van Huffel, H. Jeong, C. Yoon, C. Kim, J. Huo, S. Ourselin, R. Sparks, A. Clèrigues, A. Oliver, X. Lladó, L. Chalcroft, I. Pappas, J. Bertels, E. Heylen, J. Moreau, N. Hatami, C. Frindel, A. Qayyum, M. Mazher, D. Puig, S. Lin, C. Juan, T. Hu, L. Boone, M. Goubran, Y. Liu, S. Wegener, F. Kofler, I. Ezhov, S. Shit, M. Petzsche, B. Menze, J. Kirschke and B. Wiestler, "A Robust Ensemble Algorithm for Ischemic Stroke Lesion Segmentation: Generalizability and Clinical Utility Beyond the ISLES Challenge", arXiv:2403.19425, 2024.
- H. Häntze, L. Xu, L. Donle, F. Dorfner, A. Hering, L. Adams and K. Bressem, "Improve Cross-Modality Segmentation by Treating MRI Images as Inverted CT Scans", arXiv:2405.03713, 2024.
- N. Khalili, J. Spronck, F. Ciompi, J. van der Laak and G. Litjens, "Uncertainty-guided annotation enhances segmentation with the human-in-the-loop", arXiv:2404.07208, 2024.
- H. Häntze, L. Xu, F. Dorfner, L. Donle, D. Truhn, H. Aerts, M. Prokop, B. van Ginneken, A. Hering, L. Adams and K. Bressem, "MRSegmentator: Robust Multi-Modality Segmentation of 40 Classes in MRI and CT Sequences", arXiv:2405.06463, 2024.
- H. Bran, F. Navarro, I. Ezhov, A. Bayat, D. Das, F. Kofler, S. Shit, D. Waldmannstetter, J. Paetzold, X. Hu, B. Wiestler, L. Zimmer, T. Amiranashvili, C. Prabhakar, C. Berger, J. Weidner, M. Alonso-Basant, A. Rashid, U. Baid, W. Adel, D. Ali, B. Baheti, Y. Bai, I. Bhatt, S. Cetindag, W. Chen, L. Cheng, P. Dutand, L. Dular, M. Elattar, M. Feng, S. Gao, H. Huisman, W. Hu, S. Innani, W. Jiat, D. Karimi, H. Kuijf, J. Kwak, H. Le, X. Lia, H. Lin, T. Liu, J. Ma, K. Ma, T. Ma, I. Oksuz, R. Holland, A. Oliveira, J. Pal, X. Pei, M. Qiao, A. Saha, R. Selvan, L. Shen, J. Silva, Z. Spiclin, S. Talbar, D. Wang, W. Wang, X. Wang, Y. Wang, R. Xia, K. Xu, Y. Yan, M. Yergin, S. Yu, L. Zeng, Y. Zhang, J. Zhao, Y. Zheng, M. Zukovec, R. Do, A. Becker, A. Simpson, E. Konukoglu, A. Jakab, S. Bakas, L. Joskowicz and B. Menze, "QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge", arXiv:2405.18435, 2024.
- C. Grisi, G. Litjens and J. van der Laak, "Masked Attention as a Mechanism for Improving Interpretability of Vision Transformers", arXiv:2404.18152, 2024.
- A. Hering, S. de Boer, A. Saha, J. Twilt, D. Yakar, M. de Rooij, H. Huisman and J.S. Bosma, "Deformable MRI Sequence Registration for AI-based Prostate Cancer Diagnosis", arXiv:2404.09666, 2024.
- K. Silina and F. Ciompi, "Hitchhiker's guide to cancer-associated lymphoid aggregates in histology images: manual and deep learning-based quantification approaches", arXiv:2403.04142, 2024.
- C. Grisi, G. Litjens and J. van der Laak, "Hierarchical Vision Transformers for Context-Aware Prostate Cancer Grading in Whole Slide Images", arXiv:2312.12619, 2023.
- J. van der Graaf, M. van Hooff, C. Buckens, M. Rutten, J. van Susante, R. Kroeze, M. de Kleuver, B. van Ginneken and N. Lessmann, "Lumbar spine segmentation in MR images: a dataset and a public benchmark", arXiv:2306.12217, 2023.
- G. Humpire-Mamani, C. Jacobs, M. Prokop, B. van Ginneken and N. Lessmann, "Transfer learning from a sparsely annotated dataset of 3D medical images", arXiv:2311.05032, 2023.
- G. Mamani, N. Lessmann, E. Scholten, M. Prokop, C. Jacobs and B. van Ginneken, "Kidney abnormality segmentation in thorax-abdomen CT scans", arXiv:2309.03383, 2023.
- M. Hosseinzadeh, A. Saha, J. Bosma and H. Huisman, "Uncertainty-Aware Semi-Supervised Learning for Prostate MRI Zonal Segmentation", arXiv:2305.05984, 2023.
- L. Boulogne, J. Lorenz, D. Kienzle, R. Schon, K. Ludwig, R. Lienhart, S. Jegou, G. Li, C. Chen, Q. Wang, D. Shi, M. Maniparambil, D. Muller, S. Mertes, N. Schroter, F. Hellmann, M. Elia, I. Dirks, M. Bossa, A. Berenguer, T. Mukherjee, J. Vandemeulebroucke, H. Sahli, N. Deligiannis, P. Gonidakis, N. Huynh, I. Razzak, R. Bouadjenek, M. Verdicchio, P. Borrelli, M. Aiello, J. Meakin, A. Lemm, C. Russ, R. Ionasec, N. Paragios, B. van Ginneken and M. Dubois, "The STOIC2021 COVID-19 AI challenge: applying reusable training methodologies to private data", arXiv:2306.10484, 2023.
- M. Eisenmann, A. Reinke, V. Weru, M. Tizabi, F. Isensee, T. Adler, P. Godau, V. Cheplygina, M. Kozubek, S. Ali, A. Gupta, J. Kybic, A. Noble, C. de Solórzano, S. Pachade, C. Petitjean, D. Sage, D. Wei, E. Wilden, D. Alapatt, V. Andrearczyk, U. Baid, S. Bakas, N. Balu, S. Bano, V. Bawa, J. Bernal, S. Bodenstedt, A. Casella, J. Choi, O. Commowick, M. Daum, A. Depeursinge, R. Dorent, J. Egger, H. Eichhorn, S. Engelhardt, M. Ganz, G. Girard, L. Hansen, M. Heinrich, N. Heller, A. Hering, A. Huaulmé, H. Kim, B. Landman, H. Li, J. Li, J. Ma, A. Martel, C. Martín-Isla, B. Menze, C. Nwoye, V. Oreiller, N. Padoy, S. Pati, K. Payette, C. Sudre, K. van Wijnen, A. Vardazaryan, T. Vercauteren, M. Wagner, C. Wang, M. Yap, Z. Yu, C. Yuan, M. Zenk, A. Zia, D. Zimmerer, R. Bao, C. Choi, A. Cohen, O. Dzyubachyk, A. Galdran, T. Gan, T. Guo, P. Gupta, M. Haithami, E. Ho, I. Jang, Z. Li, Z. Luo, F. Lux, S. Makrogiannis, D. Müller, Y. Oh, S. Pang, C. Pape, G. Polat, C. Reed, K. Ryu, T. Scherr, V. Thambawita, H. Wang, X. Wang, K. Xu, H. Yeh, D. Yeo, Y. Yuan, Y. Zeng, X. Zhao, J. Abbing, J. Adam, N. Adluru, N. Agethen, S. Ahmed, Y. Khalil, M. Alenyà, E. Alhoniemi, C. An, T. Anwar, T. Arega, N. Avisdris, D. Aydogan, Y. Bai, M. Calisto, B. Basaran, M. Beetz, C. Bian, H. Bian, K. Blansit, L. Bloch, R. Bohnsack, S. Bosticardo, J. Breen, M. Brudfors, R. Brüngel, M. Cabezas, A. Cacciola, Z. Chen, Y. Chen, D. Chen, M. Cho, M. Choi, C. Xie, D. Cobzas, J. Cohen-Adad, J. Acero, S. Das, M. de Oliveira, H. Deng, G. Dong, L. Doorenbos, C. Efird, S. Escalera, D. Fan, M. Serj, A. Fenneteau, L. Fidon, P. Filipiak, R. Finzel, N. Freitas, C. Friedrich, M. Fulton, F. Gaida, F. Galati, C. Galazis, C. Gan, Z. Gao, S. Gao, M. Gazda, B. Gerats, N. Getty, A. Gibicar, R. Gifford, S. Gohil, M. Grammatikopoulou, D. Grzech, O. Güley, T. Günnemann, C. Guo, S. Guy, H. Ha, L. Han, I. Han, A. Hatamizadeh, T. He, J. Heo, S. Hitziger, S. Hong, S. Hong, R. Huang, Z. Huang, M. Huellebrand, S. Huschauer, M. Hussain, T. Inubushi, E. Polat, M. Jafaritadi, S. Jeong, B. Jian, Y. Jiang, Z. Jiang, Y. Jin, S. Joshi, A. Kadkhodamohammadi, R. Kamraoui, I. Kang, J. Kang, D. Karimi, A. Khademi, M. Khan, S. Khan, R. Khantwal, K. Kim, T. Kline, S. Kondo, E. Kontio, A. Krenzer, A. Kroviakov, H. Kuijf, S. Kumar, F. La Rosa, A. Lad, D. Lee, M. Lee, C. Lena, H. Li, L. Li, X. Li, F. Liao, K. Liao, A. Oliveira, C. Lin, S. Lin, A. Linardos, M. Linguraru, H. Liu, T. Liu, D. Liu, Y. Liu, J. Lourenço-Silva, J. Lu, J. Lu, I. Luengo, C. Lund, H. Luu, Y. Lv, Y. Lv, U. Macar, L. Maechler, S. L., K. Marshall, M. Mazher, R. McKinley, A. Medela, F. Meissen, M. Meng, D. Miller, S. Mirjahanmardi, A. Mishra, S. Mitha, H. Mohy-ud-Din, T. Mok, G. Murugesan, E. Karthik, S. Nalawade, J. Nalepa, M. Naser, R. Nateghi, H. Naveed, Q. Nguyen, C. Quoc, B. Nichyporuk, B. Oliveira, D. Owen, J. Pal, J. Pan, W. Pan, W. Pang, B. Park, V. Pawar, K. Pawar, M. Peven, L. Philipp, T. Pieciak, S. Plotka, M. Plutat, F. Pourakpour, D. Preloznik, K. Punithakumar, A. Qayyum, S. Queirós, A. Rahmim, S. Razavi, J. Ren, M. Rezaei, J. Rico, Z. Rieu, M. Rink, J. Roth, Y. Ruiz-Gonzalez, N. Saeed, A. Saha, M. Salem, R. Sanchez-Matilla, K. Schilling, W. Shao, Z. Shen, R. Shi, P. Shi, D. Sobotka, T. Soulier, B. Fadida, D. Stoyanov, T. Mun, X. Sun, R. Tao, F. Thaler, A. Théberge, F. Thielke, H. Torres, K. Wahid, J. Wang, Y. Wang, W. Wang, X. Wang, J. Wen, N. Wen, M. Wodzinski, Y. Wu, F. Xia, T. Xiang, C. Xiaofei, L. Xu, T. Xue, Y. Yang, L. Yang, K. Yao, H. Yao, A. Yazdani, M. Yip, H. Yoo, F. Yousefirizi, S. Yu, L. Yu, J. Zamora, R. Zeineldin, D. Zeng, J. Zhang, B. Zhang, J. Zhang, F. Zhang, H. Zhang, Z. Zhao, Z. Zhao, J. Zhao, C. Zhao, Q. Zheng, Y. Zhi, Z. Zhou, B. Zou, K. Maier-Hein, P. Jäger, A. Kopp-Schneider and L. Maier-Hein, "Biomedical image analysis competitions: The state of current participation practice", arXiv:2212.08568, 2022.
- J.S. Bosma, A. Saha, M. Hosseinzadeh, I. Slootweg, M. de Rooij and H. Huisman, "Annotation-efficient cancer detection with report-guided lesion annotation for deep learning-based prostate cancer detection in bpMRI", arXiv:2112.05151, 2021.
- M. Antonelli, A. Reinke, S. Bakas, K. Farahani, AnnetteKopp-Schneider, B. Landman, G. Litjens, B. Menze, O. Ronneberger, R. Summers, B. van Ginneken, M. Bilello, P. Bilic, P. Christ, R. Do, M. Gollub, S. Heckers, H. Huisman, W. Jarnagin, M. McHugo, S. Napel, J. Pernicka, K. Rhode, C. Tobon-Gomez, E. Vorontsov, H. Huisman, J. Meakin, S. Ourselin, M. Wiesenfarth, P. Arbelaez, B. Bae, S. Chen, L. Daza, J. Feng, B. He, F. Isensee, Y. Ji, F. Jia, N. Kim, I. Kim, D. Merhof, A. Pai, B. Park, M. Perslev, R. Rezaiifar, O. Rippel, I. Sarasua, W. Shen, J. Son, C. Wachinger, L. Wang, Y. Wang, Y. Xia, D. Xu, Z. Xu, Y. Zheng, A. Simpson, L. Maier-Hein and M. Cardoso, "The Medical Segmentation Decathlon", arXiv preprint arXiv:2106.05735, 2021.
- J. Lotz, N. Weiss, J. van der Laak and S. Heldmann, "Comparison of Consecutive and Re-stained Sections for Image Registration in Histopathology", arXiv:2106.13150, 2021.
- M. Aubreville, C. Bertram, M. Veta, R. Klopfleisch, N. Stathonikos, K. Breininger, N. ter Hoeve, F. Ciompi and A. Maier, "Quantifying the Scanner-Induced Domain Gap in Mitosis Detection", arXiv:2103.16515, 2021.
- J. Bokhorst, I. Nagtegaal, F. Fraggetta, S. Vatrano, W. Mesker, M. Vieth, J. van der Laak and F. Ciompi, "Automated risk classification of colon biopsies based on semantic segmentation of histopathology images", arXiv:2109.07892, 2021.
- W. Xie, C. Jacobs and B. van Ginneken, "Dense regression activation maps for lesion segmentation in CT scans of COVID-19 patients", arXiv:2105.11748, 2021.
- A. Reinke, M. Eisenmann, M. Tizabi, C. Sudre, T. Radsch, M. Antonelli, T. Arbel, S. Bakas, M. Cardoso, V. Cheplygina, K. Farahani, B. Glocker, D. Heckmann-Notzel, F. Isensee, P. Jannin, C. Kahn, J. Kleesiek, T. Kurc, M. Kozubek, B. Landman, G. Litjens, K. Maier-Hein, B. Menze, H. Muller, J. Petersen, M. Reyes, N. Rieke, B. Stieltjes, R. Summers, S. Tsaftaris, B. van Ginneken, A. Kopp-Schneider, P. Jager and L. Maier-Hein, "Common Limitations of Image Processing Metrics: A Picture Story", arXiv preprint arXiv:2104.05642, 2021.
- P. Muller, B. Liefers, T. Treis, F. Gomes Rodrigues, A. Olvera-Barrios, B. Paul, N. Dhingra, A. Lotery, C. Bailey, P. Taylor, C. Sánchez and A. Tufail, "Reliability of retinal pathology quantification in age-related macular degeneration: Implications for clinical trials and machine learning applications", medrxiv, 2020.
- A. Meyer, G. Chlebus, M. Rak, D. Schindele, M. Schostak, B. van Ginneken, A. Schenk, H. Meine, H. Hahn, A. Schreiber and C. Hansen, "Anisotropic 3D Multi-Stream CNN for Accurate Prostate Segmentation from Multi-Planar MRI", arXiv:2009.11120, 2020.
- G. Bortsova, C. González-Gonzalo, S. Wetstein, F. Dubost, I. Katramados, L. Hogeweg, B. Liefers, B. van Ginneken, J. Pluim, M. Veta, C. Sánchez and M. de Bruijne, "Adversarial Attack Vulnerability of Medical Image Analysis Systems: Unexplored Factors", arXiv:2006.06356, 2020.
- Y. Beauferris, J. Teuwen, D. Karkalousos, N. Moriakov, M. Caan, G. Yiasemis, L. Rodrigues, A. Lopes, H. Pedrini, L. Rittner, M. Dannecker, V. Studenyak, F. Gröger, D. Vyas, S. Faghih-Roohi, A. Jethi, J. Raju, M. Sivaprakasam, M. Lasby, N. Nogovitsyn, W. Loos, R. Frayne and R. Souza, "Multi-Coil MRI Reconstruction Challenge -- Assessing Brain MRI Reconstruction Models and their Generalizability to Varying Coil Configurations", arXiv:2011.07952, 2020.
- N. Lessmann and B. van Ginneken, "Random smooth gray value transformations for cross modality learning with gray value invariant networks", arXiv:2003.06158, 2020.
- C. Mercan, M. Balkenhol, R. Salgado, M. Sherman, P. Vielh, W. Vreuls, A. Polonia, H. Horlings, W. Weichert, J. Carter, P. Bult, M. Christgen, C. Denkert, K. van de Vijver, J. van der Laak and F. Ciompi, "Automated Scoring of Nuclear Pleomorphism Spectrum with Pathologist-level Performance in Breast Cancer", arXiv:2012.04974, 2020.
- M. Muckley, B. Riemenschneider, A. Radmanesh, S. Kim, G. Jeong, J. Ko, Y. Jun, H. Shin, D. Hwang, M. Mostapha, S. Arberet, D. Nickel, Z. Ramzi, P. Ciuciu, J. Starck, J. Teuwen, D. Karkalousos, C. Zhang, A. Sriram, Z. Huang, N. Yakubova, Y. Lui and F. Knoll, "Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction", arXiv:2012.06318, 2020.
- A. Sekuboyina, M. Husseini, A. Bayat, M. Löffler, H. Liebl, H. Li, G. Tetteh, J. Kukačka, C. Payer, D. Stern, M. Urschler, M. Chen, D. Cheng, N. Lessmann, Y. Hu, T. Wang, D. Yang, D. Xu, F. Ambellan, T. Amiranashvili, M. Ehlke, H. Lamecker, S. Lehnert, M. Lirio, N. de Olaguer, H. Ramm, M. Sahu, A. Tack, S. Zachow, T. Jiang, X. Ma, C. Angerman, X. Wang, K. Brown, A. Kirszenberg, É. Puybareau, D. Chen, Y. Bai, B. Rapazzo, T. Yeah, A. Zhang, S. Xu, F. Hou, Z. He, C. Zeng, Z. Xiangshang, X. Liming, T. Netherton, R. Mumme, L. Court, Z. Huang, C. He, L. Wang, S. Ling, L. Huynh, N. Boutry, R. Jakubicek, J. Chmelik, S. Mulay, M. Sivaprakasam, J. Paetzold, S. Shit, I. Ezhov, B. Wiestler, B. Glocker, A. Valentinitsch, M. Rempfler, B. Menze and J. Kirschke, "VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images", arXiv:2001.09193, 2020.
- H. Pinckaers and G. Litjens, "Neural Ordinary Differential Equations for Semantic Segmentation of Individual Colon Glands", arXiv:1910.10470, 2019.
- P. Putzky, D. Karkalousos, J. Teuwen, N. Moriakov, B. Bakker, M. Caan and M. Welling, "i-RIM applied to the fastMRI challenge", arXiv:1910.08952, 2019.
- K. Murphy, S. Habib, S. Zaidi, S. Khowaja, A. Khan, J. Melendez, E. Scholten, F. Amad, S. Schalekamp, M. Verhagen, R. Philipsen, A. Meijers and B. van Ginneken, "Computer aided detection of tuberculosis on chest radiographs: An evaluation of the CAD4TB v6 system", arXiv:1903.03349, 2019.
- B. Liefers, J. Colijn, C. González-Gonzalo, T. Verzijden, P. Mitchell, C. Hoyng, B. van Ginneken, C. Klaver and C. Sánchez, "A deep learning model for segmentation of geographic atrophy to study its long-term natural history", arXiv:1908.05621, 2019.
- P. Bilic, P. Christ, E. Vorontsov, G. Chlebus, H. Chen, Q. Dou, C. Fu, X. Han, P. Heng, J. Hesser, S. Kadoury, T. Konopczynski, M. Le, C. Li, X. Li, J. Lipkova, J. Lowengrub, H. Meine, J. Moltz, C. Pal, M. Piraud, X. Qi, J. Qi, M. Rempfler, K. Roth, A. Schenk, A. Sekuboyina, E. Vorontsov, P. Zhou, C. Hulsemeyer, M. Beetz, F. Ettlinger, F. Gruen, G. Kaissis, F. Lohofer, R. Braren, J. Holch, F. Hofmann, W. Sommer, V. Heinemann, C. Jacobs, G. Humpire Mamani, B. van Ginneken, G. Chartrand, A. Tang, M. Drozdzal, A. Ben-Cohen, E. Klang, M. Amitai, E. Konen, H. Greenspan, J. Moreau, A. Hostettler, L. Soler, R. Vivanti, A. Szeskin, N. Lev-Cohain, J. Sosna, L. Joskowicz and B. Menze, "The Liver Tumor Segmentation Benchmark (LiTS)", arXiv:1901.04056, 2019.
- C. González-Gonzalo, B. Liefers, B. van Ginneken and C. Sánchez, "Iterative augmentation of visual evidence for weakly-supervised lesion localization in deep interpretability frameworks", arXiv:1910.07373, 2019.
- R. Dilz, L. Schröder, N. Moriakov, J. Sonke and J. Teuwen, "Learned SIRT for Cone Beam Computed Tomography Reconstruction", arXiv:1908.10715, 2019.
- A. Simpson, M. Antonelli, S. Bakas, M. Bilello, K. Farahani, B. van Ginneken, A. Kopp-Schneider, B. Landman, G. Litjens, B. Menze, O. Ronneberger, R. Summers, P. Bilic, P. Christ, R. Do, M. Gollub, J. Golia-Pernicka, S. Heckers, W. Jarnagin, M. McHugo, S. Napel, E. Vorontsov, L. Maier-Hein and M. Cardoso, "A large annotated medical image dataset for the development and evaluation of segmentation algorithms", arXiv:1902.09063, 2019.
- N. Pawlowski, S. Bhooshan, N. Ballas, F. Ciompi, B. Glocker and M. Drozdzal, "Needles in Haystacks: On Classifying Tiny Objects in Large Images", arXiv:1908.06037, 2019.
- M. Argus, C. Schaefer-Prokop, D. Lynch and B. van Ginneken, "Function Follows Form: Regression from Complete Thoracic Computed Tomography Scans", arXiv:1909.12047, 2019.
- L. Maier-Hein, A. Reinke, M. Kozubek, A. L. Martel, T. Arbel, M. Eisenmann, A. Hanbuary, P. Jannin, H. Muller, S. Onogur, J. Saez-Rodriguez, B. van Ginneken, A. Kopp-Schneider and B. Landman, "BIAS: Transparent reporting of biomedical image analysis challenges", arXiv:1910.04071, 2019.
- D. Belli, S. Hu, E. Sogancioglu and B. van Ginneken, "Chest X-Rays Image Inpainting with Context Encoders", arXiv:1812.00964, 2018.
- E. Sogancioglu, S. Hu, D. Belli and B. van Ginneken, "Chest X-ray Inpainting with Deep Generative Models", arXiv:1809.01471, 2018.
- A. de Gelder and H. Huisman, "Autoencoders for Multi-Label Prostate MR Segmentation", arXiv:1806.08216, 2018.
- J. Teuwen and P. Urbach, "On Maximum Focused Electric Energy in Bounded Regions", arXiv:1801.02450, 2018.
- D. Belli, S. Hu, E. Sogancioglu and B. van Ginneken, "Context Encoding Chest X-rays", arXiv:1812.00964, 2018.
- S. Kazeminia, C. Baur, A. Kuijper, B. van Ginneken, N. Navab, S. Albarqouni and A. Mukhopadhyay, "GANs for Medical Image Analysis", arXiv:1809.06222, 2018.
- G. Aresta, C. Jacobs, T. Araújo, A. Cunha, I. Ramos, B. van Ginneken and A. Campilho, "iW-Net: an automatic and minimalistic interactive lung nodule segmentation deep network", arXiv:1811.12789, 2018.
- T. de Moor, A. Rodriguez-Ruiz, R. Mann and J. Teuwen, "Automated soft tissue lesion detection and segmentation in digital mammography using a u-net deep learning network", arXiv:1802.06865, 2018.
- Z. Li, Z. Hu, J. Xu, T. Tan, H. Chen, Z. Duan, P. Liu, J. Tang, G. Cai, Q. Ouyang, Y. Tang, G. Litjens and Q. Li, "Computer-aided diagnosis of lung carcinoma using deep learning - a pilot study", arXiv:1803.05471, 2018.
- G. Mooij, I. Bagulho and H. Huisman, "Automatic segmentation of prostate zones", arXiv:1806.07146, 2018.
- T. Kooi and N. Karssemeijer, "Classifying Symmetrical Differences and Temporal Change in Mammography Using Deep Neural Networks", arXiv:1703.07715, 2017.
Papers in conference proceedings
- C. Lems, D. Geijs, J. Bokhorst, M. Sülter, L. van Eekelen and F. Ciompi, "Color Deconvolution for Color-Agnostic and Cross-Modality Analysis of Immunohistochemistry Whole-Slide Images with Deep Learning", 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 2024:1-4.
- S. Püttmann, L. Borras Ferris, N. Marini, W. Aswolinsky, S. Vatrano, F. Fragetta, I. Nagtegaal, C. van der Post, F. Ciompi, M. Atzori, C. Friedrich and H. Müller, "Automated classification of celiac disease in histopathological images: a multi-scale approach", Medical Imaging 2024: Computer-Aided Diagnosis, 2024.
- L. Borras Ferris, S. Püttmann, N. Marini, S. Vatrano, F. Fragetta, A. Caputo, F. Ciompi, M. Atzori and H. Müller, "A full pipeline to analyze lung histopathology images", Medical Imaging 2024: Digital and Computational Pathology, 2024.
- K. Faryna, J. van der Laak and G. Litjens, "Towards embedding stain-invariance in convolutional neural networks for H&E-stained histopathology", Medical Imaging 2024: Digital and Computational Pathology, 2024.
- C. Tommasino, C. Russo, A. Rinaldi and F. Ciompi, ""HoVer-UNet": Accelerating Hovernet with Unet-Based Multi-Class Nuclei Segmentation Via Knowledge Distillation", 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 2024:1-4.
- N. Contreras, C. Grisi, W. Aswolinskiy, S. Vatrano, F. Fraggetta, I. Nagtegaal, M. D'Amato and F. Ciompi, "Benchmarking Hierarchical Image Pyramid Transformer for the Classification of Colon Biopsies and Polyps Histopathology Images", 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 2024:1-4.
- A. Moradi, F. Zerka, J. Sander Bosma, D. Yakar, J. Geerdink, H. Huisman, T. Frost Bathen and M. Elschot, "Federated learning for prostate cancer detection in biparametric MRI: optimization of rounds, epochs, and aggregation strategy", Medical Imaging 2024: Computer-Aided Diagnosis, 2024.
- A. Saha, J.S. Bosma, J. Twilt, B. van Ginneken, D. Yakar, M. Elschot, J. Veltman, J. Futterer, M. de Rooij and H. Huisman, "Artificial Intelligence and Radiologists at Prostate Cancer Detection in MRI: The PI-CAI Challenge", Medical Imaging with Deep Learning, 2023.
- P. Vendittelli, J. Bokhorst, E. Smeets, V. Kryklyva, L. Brosens, C. Verbeke and G. Litjens, "Automatic quantification of TSR as a prognostic marker for pancreatic cancer.", Medical Imaging with Deep Learning, 2023.
- N. Frohwitter, A. Hering, R. Möller and M. Hartwig, "Evaluating the Effects of a Priori Deep Learning Image Synthesis on Multi-Modal MR-to-CT Image Registration Performance", Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies, 2023.
- M. Eisenmann, A. Reinke, V. Weru, M. Tizabi, F. Isensee, T. Adler, S. Ali, V. Andrearczyk, M. Aubreville, U. Baid, S. Bakas, N. Balu, S. Bano, J. Bernal, S. Bodenstedt, A. Casella, V. Cheplygina, M. Daum, M. De Bruijne, A. Depeursinge, R. Dorent, J. Egger, D. Ellis, S. Engelhardt, M. Ganz, N. Ghatwary, G. Girard, P. Godau, A. Gupta, L. Hansen, K. Harada, M. Heinrich, N. Heller, A. Hering, A. Huaulmé, P. Jannin, A. Kavur, O. Kodym, M. Kozubek, J. Li, H. Li, J. Ma, C. Martín-Isla, B. Menze, A. Noble, V. Oreiller, N. Padoy, S. Pati, K. Payette, T. Rädsch, J. Rafael-Patiño, V. Bawa, S. Speidel, C. Sudre, K. Van Wijnen, M. Wagner, D. Wei, A. Yamlahi, M. Yap, C. Yuan, M. Zenk, A. Zia, D. Zimmerer, D. Aydogan, B. Bhattarai, L. Bloch, R. Brüngel, J. Cho, C. Choi, Q. Dou, I. Ezhov, C. Friedrich, C. Fuller, R. Gaire, A. Galdran, Á. Faura, M. Grammatikopoulou, S. Hong, M. Jahanifar, I. Jang, A. Kadkhodamohammadi, I. Kang, F. Kofler, S. Kondo, H. Kuijf, M. Li, M. Luu, T. Martinčič, P. Morais, M. Naser, B. Oliveira, D. Owen, S. Pang, J. Park, S. Park, S. Plotka, E. Puybareau, N. Rajpoot, K. Ryu, N. Saeed, A. Shephard, P. Shi, D. Stepec, R. Subedi, G. Tochon, H. Torres, H. Urien, J. Vilaça, K. Wahid, H. Wang, J. Wang, L. Wang, X. Wang, B. Wiestler, M. Wodzinski, F. Xia, J. Xie, Z. Xiong, S. Yang, Y. Yang, Z. Zhao, K. Maier-Hein, P. Jäger, A. Kopp-Schneider and L. Maier-Hein, "Why is the Winner the Best?", 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
- J. Spronck, T. Gelton, L. van Eekelen, J. Bogaerts, L. Tessier, M. van Rijthoven, L. van der Woude, M. van den Heuvel, W. Theelen, J. van der Laak and F. Ciompi, "nnUNet meets pathology: bridging the gap for application to whole-slide images and computational biomarkers", Medical Imaging with Deep Learning, 2023.
- S. Scharm, C. Schaefer-Prokop, A. Schreuder, J. Ehmig, J. Fuge, F. Wacker, A. Prasse and H. Shin, "CT-based assessment of alveolar collapse using attenuation histograms in inspiration and expiration: Evaluation as a prognostic imaging marker in IPF patients", Imaging, 2023.
- D. Schouten and G. Litjens, "PythoStitcher: an iterative approach for stitching digitized tissue fragments into full resolution whole-mount reconstructions", Medical Imaging, 2023;12471:1247118.
- S. Scharm, J. Ehmig, C. Schaefer-Prokop, A. Schreuder, J. Fuge, F. Wacker, A. Prasse and H. Shin, "Alveolar collapse as a prognostic marker in patients with IPF: A CT-based assessment using an extended parametric response mapping technique", European Respiratory Journal, 2023.
- J.S. Bosma, D. Peeters, N. Alves, A. Saha, Z. Saghir, C. Jacobs and H. Huisman, "Reproducibility of Training Deep Learning Models for Medical Image Analysis", Medical Imaging with Deep Learning, 2023.
- M. van Bommel, J. Bogaerts, R. Hermens, M. Steenbeek, J. de Hullu, J. van der Laak and M. Simons, "2022-RA-646-ESGO Consensus based recommendations for the diagnosis of serous tubal intraepithelial carcinoma, an international delphi study", Pathology, 2022.
- N. Alves and B. de Wilde, "Uncertainty-Guided Self-learning Framework for Semi-supervised Multi-organ Segmentation", Fast and Low-Resource Semi-supervised Abdominal Organ Segmentation, 2022:116-127.
- Y. Li, Y. Fu, Q. Yang, Z. Min, W. Yan, H. Huisman, D. Barratt, V. Prisacariu and Y. Hu, "FEW-SHOT Image Segmentation for Cross-Institution Male Pelvic Organs Using Registration-Assisted Prototypical Learning", 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022.
- L. Studer, J. Bokhorst, F. Ciompi, A. Fischer and H. Dawson, "Building-T-cell score is a potential predictor for more aggressive treatment in pT1 colorectal cancers", Proceedings of the ECDP 2022 18th European Congress on Digital Pathology, 2022.
- A. Reinke, M. Eisenmann, M. Tizabi, C. Sudre, T. Radsch, M. Antonelli, T. Arbel, S. Bakas, J. Cardoso, V. Cheplygina, K. Farahani, B. Glocker, D. Heckmann-Notzel, F. Isensee, P. Jannin, C. Kahn, J. Kleesiek, T. Kurc, M. Kozubek, B. Landman, G. Litjens, K. Maier-Hein, A. Martel, H. Muller, J. Petersen, M. Reyes, N. Rieke, B. Stieltjes, R. Summers, S. Tsaftaris, B. van Ginneken, A. Kopp-Schneider, P. Jager and L. Maier-Hein, "Common limitations of performance metrics in biomedical image analysis", Medical Imaging with Deep Learning, 2021.
- M. van Rijthoven, M. Balkenhol, M. Atzori, P. Bult, J. van der Laak and F. Ciompi, "Few-shot weakly supervised detection and retrieval in histopathology whole-slide images", Medical Imaging, 2021;11603:137 - 143.
- G. Smit, F. Ciompi, M. Cigéhn, A. Bodén, J. van der Laak and C. Mercan, "Quality control of whole-slide images through multi-class semantic segmentation of artifacts", Medical Imaging with Deep Learning, 2021.
- W. Aswolinskiy, D. Tellez, G. Raya, L. van der Woude, M. Looijen-Salamon, J. van der Laak, K. Grunberg and F. Ciompi, "Neural image compression for non-small cell lung cancer subtype classification in H&E stained whole-slide images", Medical Imaging 2021: Digital Pathology, 2021;11603:1 - 7.
- D. Geijs, H. Pinckaers, A. Amir and G. Litjens, "End-to-end classification on basal-cell carcinoma histopathology whole-slides images", Medical Imaging, 2021;11603:1160307.
- S. Häger, S. Heldmann, A. Hering, S. Kuckertz and A. Lange, "Variable Fraunhofer MEVIS RegLib Comprehensively Applied to Learn2Reg Challenge", Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data. MICCAI 2020, 2021;12587:74-79.
- N. Marini, S. Otalora, F. Ciompi, G. Silvello, S. Marchesin, S. Vatrano, G. Buttafuoco, M. Atzori, H. Muller, N. Burlutskiy, Z. Li, F. Minhas, T. Peng, N. Rajpoot, B. Torbennielsen, J. Der Van Laak, M. Veta, Y. Yuan and I. Zlobec, "Multi-Scale Task Multiple Instance Learning for the Classification of Digital Pathology Images with Global Annotations", 2021.
- K. Faryna, J. van der Laak and G. Litjens, "Tailoring automated data augmentation to H&E-stained histopathology", Medical Imaging with Deep Learning, 2021.
- J. Vermazeren, L. van Eekelen, L. Meesters, M. Looijen-Salamon, S. Vos, E. Munari, C. Mercan and F. Ciompi, "muPEN: Multi-class PseudoEdgeNet for PD-L1 assessment", Medical Imaging with Deep Learning, 2021.
- R. Fick, B. Tayart, C. Bertrand, S. Lang, T. Rey, F. Ciompi, C. Tilmant, I. Farre and S. Hadj, "A Partial Label-Based Machine Learning Approach For Cervical Whole-Slide Image Classification: The Winning TissueNet Solution", 2021 43rd Annual International Conference of the {IEEE} Engineering in Medicine and Biology Society ({EMBC}), 2021.
- A. Hering, F. Peisen, T. Amaral, S. Gatidis, T. Eigentler, A. Othman and J. Moltz, "Whole-Body Soft-Tissue Lesion Tracking and Segmentation in Longitudinal CT Imaging Studies", Medical Imaging with Deep Learning, 2021.
- W. Xie, C. Jacobs and B. van Ginneken, "Deep Clustering Activation Maps for Emphysema Subtyping", Medical Imaging with Deep Learning, 2021.
- A. Saha, J.S. Bosma, J. Linmans, M. Hosseinzadeh and H. Huisman, "Anatomical and Diagnostic Bayesian Segmentation in Prostate MRI -- Should Different Clinical Objectives Mandate Different Loss Functions?", Medical Imaging Meets NeurIPS Workshop - 35th Conference on Neural Information Processing Systems (NeurIPS), 2021.
- B. de Wilde, R. ten Broek and H. Huisman, "Cine-MRI detection of abdominal adhesions with spatio-temporal deep learning", Medical Imaging with Deep Learning, 2021.
- C. Balta, A. Rodriguez-Ruiz, C. Mieskes, N. Karssemeijer and S. Heywang-Köbrunner, "Going from double to single reading for screening exams labeled as likely normal by AI: what is the impact?", 15th International Workshop on Breast Imaging (IWBI2020), 2020.
- C. Mercan, G. Reijnen-Mooij, D. Martin, J. Lotz, N. Weiss, M. van Gerven and F. Ciompi, "Virtual staining for mitosis detection in Breast Histopathology", IEEE International Symposium on Biomedical Imaging, 2020:1770-1774.
- Z. Swiderska-Chadaj, K. Nurzynska, G. Bartlomiej, K. Grunberg, L. van der Woude, M. Looijen-Salamon, A. Walts, T. Markiewicz, F. Ciompi and A. Gertych, "A deep learning approach to assess the predominant tumor growth pattern in whole-slide images of lung adenocarcinoma", Medical Imaging, 2020;11320:113200D.
- Z. Swiderska-Chadaj, E. Stoelinga, A. Gertych and F. Ciompi, "Multi-Patch Blending improves lung cancer growth pattern segmentation in whole-slide images", IEEE International Conference on Computational Problems of Electrical Engineering, 2020.
- K. Faryna, F. Tushar, V. D'Anniballe, R. Hou, G. Rubin and J. Lo, "Attention-guided classification of abnormalities in semi-structured computed tomography reports", Medical Imaging, 2020;11314:397 - 403.
- E. García, Y. Diez, A. Oliver, N. Karssemeijer, J. Martí, R. Martí and O. Diaz, "Evaluation of elastic parameters for breast compression using a MRI-mammography registration approach", 15th International Workshop on Breast Imaging (IWBI2020), 2020.
- K. Michielsen, N. Moriakov, J. Teuwen and I. Sechopoulos, "Deep Learning-based Initialization of Iterative Reconstruction for Breast Tomosynthesis", 6th International Conference on Image Formation in X-Ray Computed Tomography, 2020.
- J. Linmans, J. van der Laak and G. Litjens, "Efficient Out-of-Distribution Detection in Digital Pathology Using Multi-Head Convolutional Neural Networks", Medical Imaging with Deep Learning, 2020:465-478.
- N. Moriakov, J. Adler and J. Teuwen, "Kernel of CycleGAN as a principal homogeneous space", International Conference on Learning Representations, 2020.
- A. Hering and S. Heldmann, "mlVIRNET: Improved Deep Learning Registration Using a Coarse to Fine Approach to Capture all Levels of Motion", Bildverarbeitung für die Medizin, 2020:175.
- A. Saha, F. Tushar, K. Faryna, V. D'Anniballe, R. Hou, M. Mazurowski, G. Rubin and J. Lo, "Weakly Supervised 3D Classification of Chest CT using Aggregated Multi-Resolution Deep Segmentation Features", Medical Imaging, 2020;11314:39 - 44.
- D. Tellez, D. Hoppener, C. Verhoef, D. Grunhagen, P. Nierop, M. Drozdzal, J. van der Laak and F. Ciompi, "Extending Unsupervised Neural Image Compression With Supervised Multitask Learning", Medical Imaging with Deep Learning, 2020.
- A. Saha, M. Hosseinzadeh and H. Huisman, "Encoding Clinical Priori in 3D Convolutional Neural Networks for Prostate Cancer Detection in bpMRI", Medical Imaging Meets NeurIPS Workshop - 34th Conference on Neural Information Processing Systems (NeurIPS), 2020.
- L. van Eekelen, H. Pinckaers, K. Hebeda and G. Litjens, "Multi-class semantic cell segmentation and classification of aplasia in bone marrow histology images", Medical Imaging, 2020;11320:113200B.
- K. Faryna, K. Koschmieder, M. Paul, T. van den Heuvel, A. van der Eerden, R. Manniesing and B. van Ginneken, "Adversarial cycle-consistent synthesis of cerebral microbleeds for data augmentation", Medical Imaging Meets NeurIPS Workshop - 34th Conference on Neural Information Processing Systems (NeurIPS), 2020.
- X. Yu, B. Lou, B. Shi, D. Winkel, N. Arrahmane, M. Diallo, T. Meng, H. von Busch, R. Grimm, B. Kiefer, D. Comaniciu, A. Kamen, H. Huisman, A. Rosenkrantz, T. Penzkofer, I. Shabunin, M. Choi, Q. Yang and D. Szolar, "False Positive Reduction Using Multiscale Contextual Features for Prostate Cancer Detection in Multi-Parametric MRI Scans", IEEE International Symposium on Biomedical Imaging, 2020.
- H. Altun, G. Chlebus, C. Jacobs, H. Meine, B. van Ginneken and H. Hahn, "Feasibility of End-To-End Trainable Two-Stage U-Net for Detection of Axillary Lymph Nodes in Contrast-Enhanced CT Based Scans on Sparse Annotations", Medical Imaging, 2020:113141C.
- Z. Swiderska-Chadaj, K. Hebeda, M. van den Brand and G. Litjens, "Predicting MYC translocation in HE specimens of diffuse large B-cell lymphoma through deep learning", Medical Imaging, 2020;11320:1132010.
- A. Saha, P. Prasad and A. Thabit, "Leveraging Adaptive Color Augmentation in Convolutional Neural Networks for Deep Skin Lesion Segmentation", IEEE International Symposium on Biomedical Imaging, 2020:2014-2017.
- B. Lassen-Schmidt, A. Hering, S. Krass and H. Meine, "Automatic segmentation of the pulmonary lobes with a 3D u-net and optimized loss function", Medical Imaging with Deep Learning, 2020.
- M. Caballo, J. Teuwen, R. Mann and I. Sechopolous, "Breast parenchyma analysis and classification for breast masses detection using texture feature descriptors and neural networks in dedicated breast CT images", Medical Imaging, 2019.
- T. de Bel, M. Hermsen, J. Kers, J. van der Laak and G. Litjens, "Stain-Transforming Cycle-Consistent Generative Adversarial Networks for Improved Segmentation of Renal Histopathology", Medical Imaging with Deep Learning, 2019.
- M. Hosseinzadeh, P. Brand and H. Huisman, "Effect of Adding Probabilistic Zonal Prior in Deep Learning-based Prostate Cancer Detection", Medical Imaging with Deep Learning, 2019.
- H. Meine and A. Hering, "Efficient prealignment of CT scans for registration through a bodypart regressor", Medical Imaging with Deep Learning, 2019.
- B. Liefers, C. González-Gonzalo, C. Klaver, B. van Ginneken and C. Sánchez, "Dense Segmentation in Selected Dimensions: Application to Retinal Optical Coherence Tomography", Medical Imaging with Deep Learning, 2019;102:337-346.
- T. van den Heuvel, C. de Korte and B. van Ginneken, "Automated interpretation of prenatal ultrasound using a predefined acquisition protocol in resource-limited countries", Medical Imaging with Deep Learning, 2019.
- A. Hering and S. Heldmann, "Unsupervised Learning for Large Motion Thoracic CT Follow-Up Registration", Medical Imaging, 2019;10949:109491B.
- J. van Vugt, E. Marchiori, R. Mann, A. Gubern-Merida, N. Moriakov and J. Teuwen, "Vendor-independent soft tissue lesion detection using weakly supervised and unsupervised adversarial domain adaptation", Medical Imaging, 2019.
- J. Bokhorst, H. Pinckaers, P. van Zwam, I. Nagetgaal, J. van der Laak and F. Ciompi, "Learning from sparsely annotated data for semantic segmentation in histopathology images", Medical Imaging with Deep Learning, 2019;102:81-94.
- D. Ruhe, V. Codreanu, C. van Leeuwen, D. Podareanu, V. Saletore and J. Teuwen, "Generating CT-scans with 3D Generative Adversarial Networks Using a Supercomputer", Medical Imaging meets NeurIPS, 2019.
- N. Lessmann, J. Wolterink, M. Zreik, M. Viergever, B. van Ginneken and I. Isgum, "Vertebra partitioning with thin-plate spline surfaces steered by a convolutional neural network", Medical Imaging with Deep Learning, 2019.
- H. Pinckaers, W. Bulten and G. Litjens, "High resolution whole prostate biopsy classification using streaming stochastic gradient descent", Medical Imaging, 2019(1).
- T. van der Ouderaa, D. Worrall and B. van Ginneken, "Chest CT Super-resolution and Domain-adaptation using Memory-efficient 3D Reversible GANs", Medical Imaging with Deep Learning, 2019.
- N. Moriakov, K. Michielsen, R. Mann, J. Adler, I. Sechopolous and J. Teuwen, "Deep learning framework for digital breast tomosynthesis reconstruction", Medical Imaging, 2019.
- K. Dercksen, W. Bulten and G. Litjens, "Dealing with Label Scarcity in Computational Pathology: A Use Case in Prostate Cancer Classification", Medical Imaging with Deep Learning, 2019.
- C. Mercan, M. Balkenhol, J. van der Laak and F. Ciompi, "From Point Annotations to Epithelial Cell Detection in Breast Cancer Histopathology using RetinaNet", Medical Imaging with Deep Learning, 2019.
- E. Calli, E. Sogancioglu, E. Scholten, K. Murphy and B. van Ginneken, "Handling label noise through model confidence and uncertainty: application to chest radiograph classification", Medical Imaging, 2019(1).
- E. Calli, K. Murphy, E. Sogancioglu and B. van Ginneken, "FRODO: Free rejection of out-of-distribution samples: application to chest x-ray analysis", Medical Imaging with Deep Learning, 2019.
- M. Kallenberg, D. Vanegas Camargo, M. Birhanu, A. Gubern-Mérida and N. Karssemeijer, "A deep learning method for volumetric breast density estimation from processed full field digital mammograms", Medical Imaging 2019: Computer-Aided Diagnosis, 2019.
- A. Hering, B. van Ginneken and S. Heldmann, "mlVIRNET: Multilevel Variational Image Registration Network", Medical Image Computing and Computer-Assisted Intervention, 2019;11769:257-265.
- S. van Velzen, M. Zreik, N. Lessmann, M. Viergever, P. de Jong, H. Verkooijen and I. Išgum, "Direct prediction of cardiovascular mortality from low-dose chest CT using deep learning", Medical Imaging, 2019.
- N. Lessmann, B. van Ginneken, P. de Jong and I. Išgum, "Iterative fully convolutional neural networks for automatic vertebra segmentation", Medical Imaging with Deep Learning, 2018.
- M. van Rijthoven, Z. Swiderska-Chadaj, K. Seeliger, J. van der Laak and F. Ciompi, "You Only Look on Lymphocytes Once", Medical Imaging with Deep Learning, 2018.
- E. Gibson, Yipeng, H. Ghavami, H. Ahmed, C. Moore, M. Emberton, H. Huisman and D. Barratt, "Inter-site variability in prostate segmentation accuracy using deep learning", Medical Image Computing and Computer-Assisted Intervention, 2018.
- Y. Hagos, A. Gubern-Mérida and J. Teuwen, "Improving Breast Cancer Detection using Symmetry Information with Deep Learning", Breast Image Analysis (BIA), 2018.
- C. González-Gonzalo, B. Liefers, B. van Ginneken and C. Sánchez, "Improving weakly-supervised lesion localization with iterative saliency map refinement", Medical Imaging with Deep Learning, 2018.
- T. de Moor, A. Rodriguez-Ruiz, R. Mann, A. Gubern Mérida and J. Teuwen, "Automated lesion detection and segmentation in digital mammography using a u-net deep learning network", 14th International Workshop on Breast Imaging (IWBI 2018), 2018.
- A. Rodriguez-Ruiz, J. Mordang, N. Karssemeijer, I. Sechopoulos and R. Mann, "Can radiologists improve their breast cancer detection in mammography when using a deep learning based computer system as decision support?", 14th International Workshop on Breast Imaging (IWBI 2018), 2018.
- M. Meijs and R. Manniesing, "Artery and Vein Segmentation of the Cerebral Vasculature in 4D CT using a 3D Fully Convolutional Neural Network", Medical Imaging, 2018;10575:105751Q.
- D. Tellez, J. van der Laak and F. Ciompi, "Gigapixel Whole-Slide Image Classification Using Unsupervised Image Compression And Contrastive Training", Medical Imaging with Deep Learning, 2018.
- W. Bulten and G. Litjens, "Unsupervised Prostate Cancer Detection on H&E using Convolutional Adversarial Autoencoders", Medical Imaging with Deep Learning, 2018.
- D. Geijs, M. Intezar, J. van der Laak and G. Litjens, "Automatic color unmixing of IHC stained whole slide images", Medical Imaging, 2018;10581.
- Z. Swiderska-Chadaj, H. Pinckaers, M. van Rijthoven, M. Balkenhol, M. Melnikova, O. Geessink, Q. Manson, G. Litjens, J. van der Laak and F. Ciompi, "Convolutional Neural Networks for Lymphocyte detection in Immunohistochemically Stained Whole-Slide Images", Medical Imaging with Deep Learning, 2018.
- G. Aresta, T. Araújo, C. Jacobs, B. van Ginneken, A. Cunha, I. Ramos and A. Campilho, "Towards an automatic lung cancer screening system in low dose computed tomography", MICCAI Workshop: Thoracic Image Analysis, 2018;11040.
- S. van de Leemput, J. Teuwen and R. Manniesing, "MemCNN: a Framework for Developing Memory Efficient Deep Invertible Networks", International Conference on Learning Representations, 2018.
- S. van de Leemput, A. Patel and R. Manniesing, "Full Volumetric Brain Tissue Segmentation in Non-contrast CT using Memory Efficient Convolutional LSTMs", Medical Imaging meets NeurIPS, 2018.
- W. Bulten, C. de Kaa, J. van der Laak and G. Litjens, "Automated segmentation of epithelial tissue in prostatectomy slides using deep learning", Medical Imaging, 2018;10581:105810S.
- N. Lessmann, B. van Ginneken and I. Išgum, "Iterative convolutional neural networks for automatic vertebra identification and segmentation in CT images", Medical Imaging, 2018;10574.
- K. Standvoss, T. Crijns, L. Goerke, D. Janssen, S. Kern, T. van Niedek, J. van Vugt, N. Burgos, E. Gerritse, J. Mol, D. van de Vooren, M. Ghafoorian, T. van den Heuvel and R. Manniesing, "Cerebral Microbleed Detection in Traumatic Brain Injury Patients using 3D Convolutational Neural Networks", Medical Imaging, 2018;10575.
- A. Rodriguez-Ruiz, R. van Engen, K. Michielsen, R. Bouwman, S. Vreemann, N. Karssemeijer, R. Mann and I. Sechopoulos, "How does wide-angle breast tomosynthesis depict calcifications in comparison to digital mammography? A retrospective observer study", 14th International Workshop on Breast Imaging (IWBI 2018), 2018.
- D. Tellez, M. Balkenhol, N. Karssemeijer, G. Litjens, J. van der Laak and F. Ciompi, "H&E stain augmentation improves generalization of convolutional networks for histopathological mitosis detection", Medical Imaging, 2018;10581.
- C. Marrocco, A. Bria, V. Di Sano, L. Borges, B. Savelli, M. Molinara, J. Mordang, N. Karssemeijer and F. Tortorella, "Mammogram denoising to improve the calcification detection performance of convolutional nets", 14th International Workshop on Breast Imaging (IWBI 2018), 2018.
- A. Patel and R. Manniesing, "A convolutional neural network for intracranial hemorrhage detection in non-contrast CT", Medical Imaging, 2018;10575.
- A. Bria, B. Savelli, C. Marrocco, J. Mordang, M. Molinara, N. Karssemeijer and F. Tortorella, "Improving the automated detection of calcifications by combining deep cascades and deep convolutional nets", 14th International Workshop on Breast Imaging (IWBI 2018), 2018.
- S. van de Leemput, M. Prokop, B. van Ginneken and R. Manniesing, "Stacked Bidirectional Convolutional LSTMs for 3D Non-contrast CT Reconstruction from Spatiotemporal 4D CT", Medical Imaging with Deep Learning, 2018.
- M. Ghafoorian, J. Teuwen, R. Manniesing, F. de Leeuw, B. van Ginneken, N. Karssemeijer and B. Platel, "Student Beats the Teacher: Deep Neural Networks for Lateral Ventricles Segmentation in Brain MR", Medical Imaging, 2018;10574:105742U.
- F. Zanjani, S. Zinger, B. Bejnordi, J. van der Laak and P. de With, "Stain normalization of histopathology images using generative adversarial networks", 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018.
- T. de Bel, M. Hermsen, J. van der Laak, G. Litjens, B. Smeets and L. Hilbrands, "Automatic segmentation of histopathological slides of renal tissue using deep learning", Medical Imaging 2018: Digital Pathology, 2018.
- J. Bokhorst, L. Rijstenberg, D. Goudkade, I. Nagtegaal, J. van der Laak and F. Ciompi, "Automatic Detection of Tumor Budding in Colorectal Carcinoma with Deep Learning", Computational Pathology and Ophthalmic Medical Image Analysis, 2018.
- A. Rodriguez-Ruiz, J. Teuwen, K. Chung, N. Karssemeijer, M. Chevalier, A. Gubern-Merida and I. Sechopoulos, "Pectoral muscle segmentation in breast tomosynthesis with deep learning", Medical Imaging, 2018.
- B. Bejnordi, J. Lin, B. Glass, M. Mullooly, G. Gierach, M. Sherman, N. Karssemeijer, J. van der Laak and A. Beck, "Deep learning-based assessment of tumor-associated stroma for diagnosing breast cancer in histopathology images", IEEE International Symposium on Biomedical Imaging, 2017:929-932.
- T. Kooi and N. Karssemeijer, "Deep learning of symmetrical discrepancies for computer-aided detection of mammographic masses", Medical Imaging, 2017;10133:101341J.
- G. Humpire Mamani, A. Setio, B. van Ginneken and C. Jacobs, "Organ detection in thorax abdomen CT using multi-label convolutional neural networks", Medical Imaging, 2017;10134.
- C. Balta, R. Bouwman, I. Sechopoulos, M. Broeders, N. Karssemeijer, R. van Engen and W. Veldkamp, "Signal template generation from acquired mammographic images for the non-prewhitening model observer with eye-filter", Medical Imaging 2017: Image Perception, Observer Performance, and Technology Assessment, 2017.
- F. Ciompi, O. Geessink, B. Bejnordi, G. de Souza, A. Baidoshvili, G. Litjens, B. van Ginneken, I. Nagtegaal and J. van der Laak, "The importance of stain normalization in colorectal tissue classification with convolutional networks", IEEE International Symposium on Biomedical Imaging, 2017:160-163.
- B. Liefers, F. Venhuizen, T. Theelen, C. Hoyng, B. van Ginneken and C. Sánchez, "Fovea Detection in Optical Coherence Tomography using Convolutional Neural Networks", Medical Imaging, 2017;10133:1013302.
- A. Mehrtash, A. Sedghi, M. Ghafoorian, M. Taghipour, C. Tempany, W. Wells, T. Kapur, P. Mousavi, P. Abolmaesumi and A. Fedorov, "Classification of clinical significance of MRI prostate findings using 3D convolutional neural networks", Medical Imaging, 2017;10134:101342A-101342A-4.
- A. Patel, S. van de Leemput, M. Prokop, B. van Ginneken and R. Manniesing, "Automatic Cerebrospinal Fluid Segmentation in Non-Contrast CT Images Using a 3D Convolutional Network", Medical Imaging, 2017;10134.
- A. Marchesi, A. Bria, C. Marrocco, M. Molinara, J. Mordang, F. Tortorella and N. Karssemeijer, "The Effect of Mammogram Preprocessing on Microcalcification Detection with Convolutional Neural Networks", 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), 2017.
- T. van den Heuvel, H. Petros, S. Santini, C. de Korte and B. van Ginneken, "Combining Automated Image Analysis with Obstetric Sweeps for Prenatal Ultrasound Imaging in Developing Countries", MICCAI} Workshop: Point-of-Care Ultrasound, 2017;10549:105-112.
- T. Kooi, J. Mordang and N. Karssemeijer, "Conditional Random Field Modelling of Interactions Between Findings in Mammography", Medical Imaging, 2017;10133:101341E.
- M. Ghafoorian, A. Mehrtash, T. Kapur, N. Karssemeijer, E. Marchiori, M. Pesteie, C. Guttmann, F. de Leeuw, C. Tempany, B. van Ginneken, A. Fedorov, P. Abolmaesumi, B. Platel and W. Wells, "Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion Segmentation", Medical Image Computing and Computer-Assisted Intervention, 2017;10435:516-524.
- T. van den Heuvel, H. Petros, S. Santini, C. de Korte and B. van Ginneken, "A step towards measuring the fetal head circumference with the use of obstetric ultrasound in a low resource setting", Medical Imaging, 2017;10139:101390V.
- P. Bándi, R. van de Loo, M. Intezar, D. Geijs, F. Ciompi, B. van Ginneken, J. van der Laak and G. Litjens, "Comparison of Different Methods for Tissue Segmentation In Histopathological Whole-Slide Images", IEEE International Symposium on Biomedical Imaging, 2017:591-595.
- M. Ghafoorian, N. Karssemeijer, T. Heskes, I. van Uden, F. de Leeuw, E. Marchiori, B. van Ginneken and B. Platel, "Non-uniform patch sampling with deep convolutional neural networks for white matter hyperintensity segmentation", IEEE International Symposium on Biomedical Imaging, 2016:1414-1417.
- M. Ufuk Dalmiş, A. Gubern-Mérida, C. Borelli, S. Vreemann, R. Mann and N. Karssemeijer, "A fully automated system for quantification of background parenchymal enhancement in breast DCE-MRI", Medical Imaging 2016: Computer-Aided Diagnosis, 2016.
- K. Holland, C. van Gils, J. Wanders, R. Mann and N. Karssemeijer, "Quantification of mammographic masking risk with volumetric breast density maps: How to select women for supplemental screening", Medical Imaging, 2016.
- K. Vijverberg, M. Ghafoorian, I. van Uden, F. de Leeuw, B. Platel and T. Heskes, "A single-layer network unsupervised feature learning method for white matter hyperintensity segmentation", Medical Imaging, 2016.
- J. Mordang, T. Janssen, A. Bria, T. Kooi, A. Gubern-Mérida and N. Karssemeijer, "Automatic Microcalcification Detection in Multi-vendor Mammography Using Convolutional Neural Networks", Breast Imaging, 2016;9699:35-42.
- M. Kallenberg, M. Nielsen, K. Holland, N. Karssemeijer, C. Igel and M. Lillholm, "Learning Density Independent Texture Features", Breast Imaging, 2016;9699:299-306.
- H. Kost, A. Homeyer, P. Bult, M. Balkenhol, J. van der Laak and H. Hahn, "A generic nuclei detection method for histopathological breast images", SPIE Proceedings, 2016.
- A. Bria, C. Marrocco, J. Mordang, N. Karssemeijer, M. Molinara and F. Tortorella, "LUT-QNE: Look-Up-Table Quantum Noise Equalization in Digital Mammograms", Breast Imaging, 2016;9699:27-34.
- E. García, A. Oliver, Y. Diez, O. Diaz, A. Gubern-Mérida, X. Lladó and J. Martí, "Comparison of Four Breast Tissue Segmentation Algorithms for Multi-modal MRI to X-ray Mammography Registration", Breast Imaging, 2016;9699:493-500.
- A. Bria, C. Marrocco, N. Karssemeijer, M. Molinara and F. Tortorella, "Deep Cascade Classifiers to Detect Clusters of Microcalcifications", Breast Imaging, 2016;9699:415-422.
- K. Holland, I. Sechopoulos, G. den Heeten, R. Mann and N. Karssemeijer, "Performance of breast cancer screening depends on mammographic compression", Breast Imaging, 2016;9699:183-189.
- T. Kooi, A. Gubern-Mérida, J. Mordang, R. Mann, R. Pijnappel, K. Schuur, A. den Heeten and N. Karssemeijer, "A Comparison Between a Deep Convolutional Neural Network and Radiologists for Classifying Regions of Interest in Mammography", Breast Imaging, 2016;9699:51-56.
- A. Gubern-Mérida, T. Tan, J. van Zelst, R. Mann and N. Karssemeijer, "Automated linking of suspicious findings between automated 3D breast ultrasound volumes", Medical Imaging, 2016.
- G. Litjens, K. Safferling and N. Grabe, "Automated robust registration of grossly misregistered whole-slide images with varying stains", Medical Imaging, 2016;9791:979103.
- N. Lessmann, I. Išgum, A. Setio, B. de Vos, F. Ciompi, P. de Jong, M. Oudkerk, W. Mali, M. Viergever and B. van Ginneken, "Deep convolutional neural networks for automatic coronary calcium scoring in a screening study with low-dose chest CT", Medical Imaging, 2016;9785:978511-1 - 978511-6.
- T. Mertzanidou, J. Hipwell, S. Reis, B. Bejnordi, M. Hermsen, M. Dalmis, S. Vreemann, B. Platel, J. van der Laak, N. Karssemeijer, R. Mann, P. Bult and D. Hawkes, "Whole Mastectomy Volume Reconstruction from 2D Radiographs and Its Mapping to Histology", Breast Imaging, 2016;9699:367-374.
- T. van den Heuvel, M. Ghafoorian, A. van der Eerden, B. Goraj, T. Andriessen, B. ter Romeny and B. Platel, "Computer Aided Detection of Brain Micro-Bleeds in Traumatic Brain Injury", Medical Imaging, 2015;9414:94142F.
- B. van Ginneken, A. Setio, C. Jacobs and F. Ciompi, "Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans", IEEE International Symposium on Biomedical Imaging, 2015:286-289.
- F. Ciompi, C. Jacobs, E. Scholten, S. van Riel, M. Wille, M. Prokop and B. van Ginneken, "Automatic detection of spiculation of pulmonary nodules in Computed Tomography images", Medical Imaging, 2015;9414(941409).
- M. Ghafoorian, N. Karssemeijer, F. de Leeuw, T. Heskes, E. Marchiori and B. Platel, "Small White Matter Lesion Detection in Cerebral Small Vessel Disease", Medical Imaging, 2015;9414:941411.
- A. Mendrik, E. Vonken, T. Witkamp, M. Prokop, B. van Ginneken and M. Viergever, "Using the Fourth Dimension to Distinguish Between Structures for Anisotropic Diffusion Filtering in 4D CT Perfusion Scans", Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data, 2015;8682:79-87.
- B. Bejnordi, G. Litjens, M. Hermsen, N. Karssemeijer and J. van der Laak, "A multi-scale superpixel classification approach to the detection of regions of interest in whole slide histopathology images", Medical Imaging, 2015;9420:94200H.
- M. Meijs, O. Debats and H. Huisman, "The evaluation of multi-structure, multi-atlas pelvic anatomy features in a prostate MR Lymphography CAD system", Medical Imaging, 2015;9414:94140T.
- G. Litjens, B. Bejnordi, N. Timofeeva, G. Swadi, I. Kovacs, C. de Hulsbergen-van Kaa and J. van der Laak, "Automated detection of prostate cancer in digitized whole-slide images of H&E-stained biopsy specimens", Medical Imaging, 2015;9420:94200B.
- J. Schwaab, A. Gubern-Mérida, L. Wang and M. Gunther, "Automatic assessment of nipple position in Automated 3D Breast Ultrasound images", MICCAI} {W}orkshop: {B}reast {I}mage {A}nalysis, 2015.
- S. Reis, B. Eiben, T. Mertzanidou, J. Hipwell, M. Hermsen, J. van der Laak, S. Pinder, P. Bult and D. Hawkes, "Minimum slice spacing required to reconstruct 3D shape for serial sections of breast tissue for comparison with medical imaging", Medical Imaging 2015: Digital Pathology, 2015.
- F. Venhuizen, B. van Ginneken, B. Bloemen, M. van Grinsven, R. Philipsen, C. Hoyng, T. Theelen and C. Sánchez, "Automated Age-Related Macular Degeneration Classification in OCT using Unsupervised Feature Learning", Medical Imaging, 2015;9414(94141I).
- A. Setio, C. Jacobs, F. Ciompi, S. van Riel, M. Wille, A. Dirksen, E. van Rikxoort and B. van Ginneken, "Computer-aided detection of lung cancer: combining pulmonary nodule detection systems with a tumor risk prediction model", Medical Imaging, 2015;9414(94141O).
- J. Mordang and N. Karssemeijer, "Vessel segmentation in screening mammograms", Medical Imaging, 2015;9414:94140J.
- S. van de Leemput, F. Dorssers and B. Ehteshami Bejnordi, "A novel spherical shell filter for reducing false positives in automatic detection of pulmonary nodules in thoracic CT scans", Medical Imaging, 2015;9414:94142P.
- L. Wang, J. Strehlow, J. Ruehaak, F. Weiler, Y. Diez, A. Gubern-Mérida, S. Diekmann, H. Laue and H. Hahn, "A fast alignment method for breast MRI follow-up studies using automated breast segmentation and current-prior registration", Medical Imaging, 2015;9413:941334-941334-8.
- E. Garcia, A. Oliver, Y. Diez, D. O., J. Georgii, A. Gubern-Mérida, J. Martí and R. Martí, "Comparing regional breast density using Full-Field Digital Mammograms and Magnetic Resonance Imaging: A preliminary study", MICCAI} {W}orkshop: {B}reast {I}mage {A}nalysis, 2015.
- A. Gubern-Mérida, T. Tan, J. van Zelst, R. Mann, B. Platel and N. Karssemeijer, "Pectoral muscle surface segmentation in automated 3D breast ultrasound using cylindrical transform and atlas information", MICCAI} {W}orkshop: {B}reast {I}mage {A}nalysis, 2015.
- K. Holland, M. Kallenberg, R. Mann, C. van Gils and N. Karssemeijer, "Stability of Volumetric Tissue Composition Measured in Serial Screening Mammograms", Breast Imaging -12th International Workshop, IWDM 2014, Gifu City, Japan, June 29 AC/a,!aEURoe July 2, 2014. Proceedings, 2014;8539.
- G. Litjens, H. Huisman, R. Elliott, N. Shih, M. Feldman, Fütterer, J. Bomers and A. Madabhushi, "Distinguishing benign confounding treatment changes from residual prostate cancer on MRI following laser ablation", Medical Imaging, 2014;9036:90361D.
- B. Ehteshami Bejnordi, N. Timofeeva, I. Otte-Höller, N. Karssemeijer and J. van der Laak, "Quantitative analysis of stain variability in histology slides and an algorithm for standardization", Medical Imaging, 2014.
- G. Litjens, R. Elliott, N. Shih, M. Feldman, J. Barentsz, C. - van de Hulsbergen Kaa, I. Kovacs, H. Huisman and A. Madabhushi, "Distinguishing prostate cancer from benign confounders via a cascaded classifier on multi-parametric MRI", Medical Imaging, 2014;9035:903512.
- J. Melendez, C. Sánchez, R. Philipsen, P. Maduskar and B. van Ginneken, "Multiple-instance learning for computer-aided detection of tuberculosis", Medical Imaging, 2014;9035:90351J.
- S. Rabbani, P. Maduskar, R. Philipsen, L. Hogeweg and B. van Ginneken, "Effect of image variation on computer aided detection systems", Medical Imaging, 2014;9035:90352H-1-90352H-8.
- J. Mordang, J. Hauth, G. den Heeten and N. Karssemeijer, "Automated Labeling of Screening Mammograms with Arterial Calcifications", Breast Imaging, 2014;8539.
- C. Jacobs, S. Opdam, E. van Rikxoort, O. Mets, J. Rooyackers, P. de Jong, M. Prokop and B. van Ginneken, "Automated detection and quantification of micronodules in thoracic CT scans to identify subjects at risk for silicosis", Medical Imaging, 2014;9035:90351I.
- Y. Diez, A. Gubern-Mérida, L. Wang, S. Diekmann, J. Martí, B. Platel, J. Kramme and R. Martí, "Comparison of Methods for Current-to-Prior Registration of Breast DCE-MRI", IWDM '14: Proceedings of the 12th international workshop on Digital Mammography, 2014;8539:689-695.
- Q. Mahmood, A. Chodorowski, B. Ehteshami Bejnordi and M. Persson, "A fully automatic unsupervised segmentation framework for the brain tissues in MR images", Medical Imaging, 2014.
- S. Schalekamp, B. van Ginneken, C. Schaefer-Prokop and N. Karssemeijer, "Impact of Bone Suppression Imaging on the Detection of Lung Nodules in Chest Radiographs: Analysis of Multiple Reading Sessions", Medical Imaging, 2013:86730Y.
- M. van Grinsven, A. Chakravarty, J. Sivaswamy, T. Theelen, B. van Ginneken and C. Sánchez, "A bag of words approach for discriminating between retinal images containing exudates or drusen", IEEE International Symposium on Biomedical Imaging, 2013:1444-1447.
- I. Fondon, M. van Grinsven, C. Sánchez and A. Saez, "Perceptually adapted method for optic disc detection on retinal fundus images", Computer-Based Medical Systems (CBMS), 2013 IEEE 26th International Symposium on, 2013:279-284.
- J. Charbonnier, E. Smit, M. Viergever, B. Velthuis and P. Vos, "Computer-aided diagnosis of acute ischemic stroke based on cerebral hypoperfusion using 4D CT angiography", Medical Imaging, 2013;8670.
- P. Maduskar, L. Hogeweg, R. Philipsen, S. Schalekamp and B. van Ginneken, "Improved texture analysis for automatic detection of Tuberculosis (TB) on Chest Radiographs with Bone Suppression images", Medical Imaging, 2013;8670(16):86700H.
- A. van der Avoird, N. Lin, B. van Ginneken and R. Manniesing, "A Hardware Implementation of a Levelset Algorithm for Carotid Lumen Segmentation in CTA", Medical Imaging, 2013.
- T. Tan, B. Eiben, B. Platel, J. Zelst, L. Han, T. Mertzanidou, S. Johnsen, J. Hipwell, R. Mann, D. Hawkes and N. Karssemeijer, "Registration of automated 3D breast ultrasound views", MICCAI} {W}orkshop: {B}reast {I}mage {A}nalysis, 2013.
- M. Riad, B. Platel, F. de Leeuw and N. Karssemeijer, "Detection of white matter lesions in cerebral small vessel disease", Medical Imaging, 2013;8670.
- P. Maduskar, L. Hogeweg, R. Philipsen and B. van Ginneken, "Automated localization of costophrenic recesses and costophrenic angle measurement on frontal chest radiographs", Medical Imaging, 2013;8670(118):867038.
- H. Laue, M. Oei, L. Chen, I. Kompan, H. Hahn, M. Prokop and R. Manniesing, "Automated Artery and Vein Detection in Dynamic CT data with an Unsupervised Classification Algorithm of the Time Intensity Curves", Medical Imaging, 2013.
- A. Gubern-Mérida, L. Wang, M. Kallenberg, R. Martí, H. Hahn and N. Karssemeijer, "Breast segmentation in MRI: quantitative evaluation of three methods", Medical Imaging, 2013:86693G-86693G-7.
- J. Schwaab, Y. Diez, J. Martí, R. Martí, J. van Zelst, B. Platel, T. Tan, J. Gregori, S. Wirtz, J. Kramme and M. Günther, "Image Quality in automated breast ultrasound images: a preliminary study for the development of automated image quality assessment", MICCAI} {W}orkshop: {B}reast {I}mage {A}nalysis, 2013.
- B. van Ginneken, R. Philipsen, L. Hogeweg, P. Maduskar, J. Melendez, C. Sánchez, R. Maane, B. dei Alorse, U. d'Alessandro and I. Adetifa, "Automated Scoring of Chest Radiographs for Tuberculosis Prevalence Surveys: A Combined Approach", The Fifth International Workshop on Pulmonary Image Analysis, 2013:9-19.
- B. Ehteshami Bejnordi, R. Moshavegh, K. Sujathan, P. Malm, E. Bengtsson and A. Mehnert, "Novel chromatin texture features for the classification of pap smears", Medical Imaging, 2013.
- A. Srikantha, M. Harz, G. Newstead, L. Wang, B. Platel, K. Hegenscheid, R. Mann, H. Hahn and H. Peitgen, "Symmetry-based detection and diagnosis of DCIS in breast MRI", Medical Imaging, 2013:86701E-86701E-8.
- F. Ciompi, R. Hua, S. Balocco, M. Alberti, O. Pujol, C. Caus, J. Mauri and P. Radeva, "Learning to Detect Stent Struts in Intravascular Ultrasound", Pattern Recognition and Image Analysis, 2013:575-583.
- J. Ramos, T. Kockelkorn, B. van Ginneken, M. Viergever, J. Grutters, R. Ramos and A. Campilho, "Learning Interstitial Lung Diseases CT Patterns from Reports Keywords", The Fifth International Workshop on Pulmonary Image Analysis, 2013:21-32.
- M. Peemen, A. Setio, B. Mesman and H. Corporaal, "Memory-centric accelerator design for Convolutional Neural Networks", Computer Design (ICCD), 2013 IEEE 31st International Conference on, 2013:13-19.
- P. Lo, E. van Rikxoort, F. Abtin, S. Ahmad, A. Ordookhani, J. Goldin and M. Brown, "Automated segmentation of pulmonary lobes in chest CT scans using evolving surfaces", Medical Imaging, 2013;8869:86693R.
- A. Gubern-Mérida, B. Platel, R. Martí and N. Karssemeijer, "Automated localization of malignant lesions in breast DCE-MRI", MICCAI} {W}orkshop: {B}reast {I}mage {A}nalysis, 2013.
- W. van de Ven, Y. Hu, J. Barentsz, N. Karssemeijer, D. Barratt and H. Huisman, "Surface-based prostate registration with biomechanical regularization", Medical Imaging, 2013;8671:86711R.
- R. Philipsen, P. Maduskar, L. Hogeweg and B. van Ginneken, "Normalization of Chest Radiographs", Medical Imaging, 2013;8670:86700G.
- L. Gallardo-Estrella, B. van Ginneken and E. van Rikxoort, "Normalization of CT scans reconstructed with different kernels to reduce variability in emphysema measurements", Medical Imaging, 2013;8670:86700E.
- F. Ciompi, S. Balocco, C. Caus, J. Mauri and P. Radeva, "Stent Shape Estimation through a Comprehensive Interpretation of Intravascular Ultrasound Images", Medical Image Computing and Computer-Assisted Intervention, 2013:345-352.
- J. Mordang, M. Oei, R. van den Boom, E. Smit, M. Prokop, B. van Ginneken and R. Manniesing, "A Pattern Recognition Framework for Vessel Segmentation in 4D CT of the Brain", Medical Imaging, 2013:866919.
- A. Setio, F. van der Sommen, S. Zinger, E. Schoon and P. de With, "Evaluation and Comparison of Textural Feature Representation for the Detection of Early Stage Cancer in Endoscopy", Proc. VISAPP, 2013:238-243.
- M. van Grinsven, Y. Lechanteur, J. van de Ven, B. van Ginneken, T. Theelen and C. Sánchez, "Automatic Age-related macular degeneration detection and staging", Medical Imaging, 2013;8670:86700M.
- M. Ghafoorian, N. Taghizadeh and H. Beigy, "Automatic Abstraction in Reinforcement Learning Using Ant System Algorithm", AAAI Spring Symposium: Lifelong Machine Learning, 2013.
- P. Lo, E. van Rikxoort, J. Goldin and M. Brown, "Semi-automated segmentation of pulmonary lobes in chest CT scans using evolving surfaces", The Fifth International Workshop on Pulmonary Image Analysis, 2013.
- A. Gubern-Mérida, M. Kallenberg, R. Martí and N. Karssemeijer, "Segmentation of the pectoral muscle in breast MRI using atlas-based approaches", Medical Image Computing and Computer-Assisted Intervention, 2012;15(Pt 2):371-378.
- J. Melendez, C. Sánchez, R. Hupse, B. van Ginneken and N. Karssemeijer, "Potential of a Standalone Computer-Aided Detection System for Breast Cancer Detection in Screening Mammography", IWDM '12: Proceedings of the 11th International Workshop on Breast Imaging, 2012;7361:682-689.
- E. van Rikxoort, P. de Jong, O. Mets and B. van Ginneken, "Automatic classication of pulmonary function in COPD patients using trachea analysis in chest CT scans", Medical Imaging, 2012;8315:83150P-83150P-6.
- S. Muenzing, B. van Ginneken and J. Pluim, "DIRBoost: An algorithm for boosting deformable image registration", IEEE International Symposium on Biomedical Imaging, 2012:1339-1342.
- J. Ramos, T. Kockelkorn, B. van Ginneken, M. Viergever, R. Ramos and A. Campilho, "Supervised Content Based Image Retrieval Using Radiology Reports", Image Analysis and Recognition, 2012;7325:249-258.
- S. Muenzing, B. van Ginneken and J. Pluim, "On Combining Algorithms for Deformable Image Registration", Biomedical Image Registration, 2012:256-265.
- M. Koek, F. Goncalves, D. Poldermans, W. Niessen and R. Manniesing, "Semi-Automated Subcutaneous and Visceral Adipose Tissue Quantification in Computed Tomography", MICCAI Workshop on Computational and Clinical Applications in Abdominal Imaging, 2012;7029:215-222.
- J. Lesniak, G. van Schie, C. Tanner, B. Platel, H. Huisman, N. Karssemeijer and G. Szekely, "Multimodal Classification of Breast Masses in Mammography and MRI using Unimodal Feature Selection and Decision Fusion", IWDM '12: Proceedings of the 11th International Workshop on Breast Imaging, 2012;7361:88-95.
- T. Kockelkorn, R. Ramos, J. Ramos, C. Sánchez, P. de Jong, C. Schaefer-Prokop, J. Grutters, B. van Ginneken and M. Viergever, "Interactive classification of lung tissue in CT scans by combining prior and interactively obtained training data: a simulation study", International Conference on Pattern Recognition, 2012:105-108.
- G. Litjens, O. Debats, W. van de Ven, N. Karssemeijer and H. Huisman, "A pattern recognition approach to zonal segmentation of the prostate on MRI", Medical Image Computing and Computer-Assisted Intervention, 2012;7511:413-420.
- C. Tromans, G. van Schie, N. Karssemeijer and M. Brady, "A Hypothesis-Test Framework for Quantitative Lesion Detection and Diagnosis", IWDM '12: Proceedings of the 11th International Workshop on Breast Imaging, 2012;7361:458-465.
- J. Bozek, M. Kallenberg, M. Grgic and N. Karssemeijer, "Comparison of Lesion Size Using Area and Volume in Full Field Digital Mammograms", IWDM '12: Proceedings of the 11th International Workshop on Breast Imaging, 2012;7361:96-103.
- R. Moshavegh, B. Ehteshami Bejnordi, A. Mehnert, K. Sujathan, P. Malm and E. Bengtsson, "Automated segmentation of free-lying cell nuclei in Pap smears for malignancy-associated change analysis", Engineering in Medicine and Biology Society (EMBC), 2012.
- A. Firouzian, R. Manniesing, C. Metz, S. Klein, B. Velthuis, G. Rinkel, A. van der Lugt and W. Niessen, "Intracranial aneurysm growth quantification on CTA", Medical Imaging, 2012;8314:831448-1-83148-9.
- G. Litjens, N. Karssemeijer and H. Huisman, "A multi-atlas approach for prostate segmentation in MRI", MICCAI} {W}orkshop: {P}rostate {C}ancer {I}maging: The {PROMISE12} Prostate Segmentation Challenge, 2012.
- R. van den Boom, M. Oei, S. Lafebre, L. Oostveen, A. Meijer, S. Steens, M. Prokop, B. van Ginneken and R. Manniesing, "Brain Tissue Segmentation in 4D CT Images Using Voxel Classification", Medical Imaging, 2012;8314:83144B-83144B-6.
- G. Litjens, J. Barentsz, N. Karssemeijer and H. Huisman, "Automated computer-aided detection of prostate cancer in MR images: from a whole-organ to a zone-based approach", Medical Imaging, 2012;8315(1):83150G-83150G-6.
- T. Tan, B. Platel, R. Mus and N. Karssemeijer, "Detection of Breast Cancer in Automated 3D Breast Ultrasound", Medical Imaging, 2012;8315:831505-1-831505-8.
- C. Jacobs, C. Sánchez, S. Saur, T. Twellmann, P. de Jong and B. van Ginneken, "Computer-Aided Detection of Ground Glass Nodules in Thoracic CT images using Shape, Intensity and Context Features", Medical Image Computing and Computer-Assisted Intervention, 2011;6893:207-214.
- D. Vukadinovic, T. van Walsum, R. Manniesing, S. Rozie, A. van der Lugt and W. Niessen, "Region Based Level Set Segmentation of the Outer Wall of the Carotid Bifurcation in CTA", Medical Imaging, 2011;7962:79623P-1 - 79623P-8.
- A. Gubern-Mérida, M. Kallenberg, R. Martí and N. Karssemeijer, "Multi-class probabilistic atlas-based segmentation method in breast MRI", Pattern Recognition and Image Analysis: proceedings of 5th Iberian Conference, 2011;5.
- G. Litjens, P. Vos, J. Barentsz, N. Karssemeijer and H. Huisman, "Automatic Computer Aided Detection of Abnormalities in Multi-Parametric Prostate MRI", Medical Imaging, 2011;7963(1).
- M. Kallenberg, M. Lokate, C. van Gils and N. Karssemeijer, "Automatic breast density segmentation based on pixel classification", Medical Imaging, 2011;7963(1):796307.
- T. Tan, B. Platel, T. Twellmann, G. van Schie, R. Mus, A. Grivegnee, L. Tabar and N. Karssemeijer, "Computer aided interpretation of lesions in automated 3D breast ultrasound", MICCAI} {W}orkshop: {B}reast {I}mage {A}nalysis, 2011.
- B. Lassen, J. Kuhnigk, E. van Rikxoort and H. Peitgen, "Interactive lung lobe segmentation and correction in tomographic images", Medical Imaging, 2011;7963:79631S-1-79631S-6.
- S. Robben, M. Velikova, P. Lucas and M. Samulski, "Discretisation Does Affect the Performance of Bayesian Networks", Research and Development in Intelligent Systems XXVII, 2011:237-250.
- M. Samulski, P. Snoeren, B. Platel, B. van Ginneken, L. Hogeweg, C. Schaefer-Prokop and N. Karssemeijer, "Computer-Aided Detection as a Decision Assistant in Chest Radiography", Medical Imaging, 2011;7966(1):796614-1-796614-6.
- W. van de Ven, G. Litjens, J. Barentsz, T. Hambrock and H. Huisman, "Required accuracy of MR-US registration for prostate biopsies", P}rostate {C}ancer {I}maging. {I}mage {A}nalysis and {I}mage-{G}uided {I}nterventions, 2011;6963:92-99.
- M. Niemeijer, A. Dumitrescu, B. van Ginneken and M. Abràmoff, "Automatic localization of bifurcations and vessel crossings in digital fundus photographs using location regression", Medical Imaging, 2011;7965:796507.
- G. van Schie, C. Tanner and N. Karssemeijer, "Estimating corresponding locations in ipsilateral breast tomosynthesis views", Medical Imaging, 2011;7963:796306.
- T. Tan, B. Platel, H. Huisman and N. Karssemeijer, "Chest wall segmentation in automated 3D breast ultrasound using a cylinder model", MICCAI} {W}orkshop: {B}reast {I}mage {A}nalysis, 2011.
- C. Jacobs, K. Murphy, T. Twellmann, P. de Jong and B. van Ginneken, "Computer-Aided Detection of Solid and Ground Glass Nodules in Thoracic CT images using two independent CAD systems", The Fourth International Workshop on Pulmonary Image Analysis, 2011:177-182.
- J. Huo, E. van Rikxoort, K. Okada, H. Kim, W. Pope, J. Goldin and M. Brown, "Confidence-based ensemble for GBM brain tumor segmentation", Medical Imaging, 2011;7962:79622P-1-79622P-6.
- D. Chong, E. van Rikxoort, H. Kim, J. Goldin and M. Brown, "Scan-rescan reproducibility of CT densitometric measures of emphysema", Medical Imaging, 2011;7963:796339-1-796339-6.
- F. Ciompi, O. Pujol, C. Gatta, X. Carrillo, J. Mauri and P. Radeva, "A holistic approach for the detection of media-adventitia border in IVUS", Medical Image Computing and Computer-Assisted Intervention, 2011:411-419.
- T. Tan, H. Huisman, B. Platel, A. Grivignee, R. Mus and N. Karssemeijer, "Classification of Breast Lesions in Automated 3D Breast Ultrasound", Medical Imaging, 2011;7963:79630X.
- P. Devarakota, D. Siddu, P. Maduskar, S. Vikal and L. Raghupathi, "Automatic lung nodule detection in thick slice CT: a comparative study of different gating schemes in CAD", Medical Imaging, 2011;7963:79630E.
- C. Tanner, G. van Schie, N. Karssemeijer and G. Szekely, "Matching Regions for Mammographic Views: Comparison and Compensation for Deformations", MICCAI} {W}orkshop: {B}reast {I}mage {A}nalysis, 2011.
- E. van Rikxoort and B. van Ginneken, "Automatic segmentation of the lungs and lobes from thoracic CT scans", The Fourth International Workshop on Pulmonary Image Analysis, 2011:261-268.
- M. Alberti, C. Gatta, S. Balocco, F. Ciompi, O. Pujol, J. Silva, X. Carrillo and P. Radeva, "Automatic branching detection in IVUS sequences", Pattern Recognition and Image Analysis, 2011:126-133.
- E. van Rikxoort, J. Goldin, M. Galperin-Aizenberg and M. Brown, "Classification of pulmonary emphysema from chest CT scans using integral geometry descriptors", Medical Imaging, 2011;7963:79631O-1-79631O-6.
- P. Maduskar, L. Hogeweg, H. Ayles, R. Dawson, P. de Jong, N. Karssemeijer and B. van Ginneken, "Cavity segmentation in chest radiographs", The Fourth International Workshop on Pulmonary Image Analysis, 2011.
- M. Radstake, M. Velikova, P. Lucas and M. Samulski, "Critiquing Knowledge Representation in Medical Image Interpretation using Structure Learning", Knowledge Representation for Health-Care (KR4HC), 2011;6512:56-70.
- P. Lo, E. van Rikxoort, J. Goldin, F. Abtin, M. de Bruijne and M. Brown, "A bottom-up approach for labeling of human airway trees", The Fourth International Workshop on Pulmonary Image Analysis, 2011:23-34.
- A. Gubern-Mérida, M. Kallenberg, R. Martí and N. Karssemeijer, "Fully automatic fibroglandular tissue segmentation in breast MRI: atlas-based approach", MICCAI} {W}orkshop: {B}reast {I}mage {A}nalysis, 2011.
- S. Balocco, C. Gatta, F. Ciompi, O. Pujol, X. Carrillo, J. Mauri and P. Radeva, "Combining Growcut and temporal correlation for IVUS lumen segmentation", Pattern Recognition and Image Analysis, 2011:556-563.
- L. Gallardo-Estrella and A. Poncela, "Human/Robot Interface for Voice Teleoperation of a Robotic Platform", Lecture Notes in Computer Science, 2011;6691:240-247.
- J. Lesniak, R. Hupse, M. Kallenberg, M. Samulski, R. Blanc, N. Karssemeijer and G. Székely, "Computer Aided Detection of Breast Masses in Mammography using Support Vector Machine Classification", Medical Imaging, 2011;7963(1):79631K.
- B. Platel, H. Huisman, H. Laue, R. Mus, R. Mann, H. Hahn and N. Karssemeijer, "Computerized Characterization of Breast Lesions using Dual-Temporal Resolution Dynamic Contrast-Enhanced MR Images", MICCAI} {W}orkshop: {B}reast {I}mage {A}nalysis, 2011.
- P. Maduskar, P. Devarakota and S. Vikal, "Automatic detection of lung vessel bifurcation in thoracic CT Images", Medical Imaging, 2011;7963:796334.
- L. Hogeweg, C. Mol, P. de Jong, R. Dawson, H. Ayles and B. van Ginneken, "Fusion of local and global detection systems to detect tuberculosis in chest radiographs", Medical Image Computing and Computer-Assisted Intervention, 2010;6363:650-657.
- C. Sánchez, M. Niemeijer, M. Abràmoff and B. van Ginneken, "Active learning for an efficient training strategy of computer-aided diagnosis systems: application to diabetic retinopathy screening", Medical Image Computing and Computer-Assisted Intervention, 2010;6363:603-610.
- G. Litjens, L. Hogeweg, A. Schilham, P. de Jong, M. Viergever and B. van Ginneken, "Simulation of nodules and diffuse infiltrates in chest radiographs using CT templates", Medical Image Computing and Computer-Assisted Intervention, 2010;6362:396-403.
- E. Brunenberg, R. Duits, B. ter Romeny and B. Platel, "A Sobolev norm based distance measure for HARDI clustering: a feasibility study on phantom and real data", Medical Image Computing and Computer-Assisted Intervention, 2010;13(Pt 1):175-182.
- M. Velikova, P. Lucas and N. Karssemeijer, "Using local context information to improve automatic mammographic mass detection", Studies in Health Technology and Informatics, 2010;160:1291-1295.
- O. Debats, N. Karssemeijer, J. Barentsz and H. Huisman, "Automated classification of lymph nodes in USPIO-enhanced MR-images: a comparison of three segmentation methods", Medical Imaging, 2010;7624:76240Q.
- E. van Dongen and B. van Ginneken, "Automatic segmentation of pulmonary vasculature in thoracic CT scans with local thresholding and airway wall removal", IEEE International Symposium on Biomedical Imaging, 2010:668-671.
- E. van Rikxoort, M. Galperin-Aizenberg, J. Goldin, T. Kockelkorn, B. van Ginneken and M. Brown, "Multi-classifier semi-supervised classification of tuberculosis patterns on chest CT scans", The Third International Workshop on Pulmonary Image Analysis, 2010:41-48.
- J. Seabra, J. Sanches, F. Ciompi and P. Radeva, "Ultrasonographic plaque characterization using a rayleigh mixture model", IEEE International Symposium on Biomedical Imaging, 2010:1-4.
- E. van Rikxoort, J. Goldin, B. van Ginneken, M. Galperin-Aizenberg, C. Ni and M. Brown, "Interactively learning a patient specific k-nearest neighbor classifier based on confidence weighted samples", IEEE International Symposium on Biomedical Imaging, 2010:556-559.
- M. Niemeijer, B. van Ginneken and M. Abràmoff, "Automatic determination of the artery vein ratio in retinal images", Medical Imaging, 2010;7624:76240I1-76240I10.
- N. Karssemeijer, "Computer aided detection in breast imaging: more than perception aid", IEEE International Symposium on Biomedical Imaging, 2010:273.
- S. Muenzing, B. van Ginneken and J. Pluim, "Knowledge Driven Regularization of the Deformation Field for PDE Based Non-Rigid Registration Algorithms", Medical Image Analysis for the Clinic - A Grand Challenge, 2010:127-136.
- K. Ma, C. Jacobs, J. Fernandez, L. Amezcua and B. Liu, "The development of a disease oriented eFolder for multiple sclerosis decision support", Medical Imaging, 2010;7628(1):76280G-76280G-7.
- T. Kockelkorn, E. van Rikxoort, J. Grutters and B. van Ginneken, "Interactive lung segmentation in CT scans with severe abnormalities", IEEE International Symposium on Biomedical Imaging, 2010:564-567.
- P. Snoeren, G. Litjens, B. van Ginneken and N. Karssemeijer, "Training a Computer Aided Detection System with Simulated Lung Nodules in Chest Radiographs", The Third International Workshop on Pulmonary Image Analysis, 2010:139-149.
- K. Murphy, B. van Ginneken, J. Reinhardt, S. Kabus, K. Ding, X. Deng and J. Pluim, "Evaluation of Methods for Pulmonary Image Registration: The EMPIRE10 Study", Medical Image Analysis for the Clinic - A Grand Challenge, 2010:11-22.
- C. Sánchez, M. Niemeijer, M. Suttorp-Schulten, M. Abràmoff and B. van Ginneken, "Improving hard exudate detection in retinal images through a combination of local and contextual information", IEEE International Symposium on Biomedical Imaging, 2010:5-8.
- H. Huisman, P. Vos, G. Litjens, T. Hambrock and J. Barentsz, "Computer aided detection of prostate cancer using t2w, DWI and DCE-MRI: methods and clinical applications", MICCAI} {W}orkshop: {P}rostate {C}ancer {I}maging: {C}omputer {A}ided {D}iagnosis, {P}rognosis, and {I}ntervention, 2010.
- P. Lo, B. van Ginneken and M. de Bruijne, "Vessel tree extraction using locally optimal paths", IEEE International Symposium on Biomedical Imaging, 2010:680-683.
- C. Gatta, S. Balocco, F. Ciompi, R. Hemetsberger, O. Leor and P. Radeva, "Real-time gating of IVUS sequences based on motion blur analysis: method and quantitative validation", Medical Image Computing and Computer-Assisted Intervention, 2010:59-67.
- G. van Schie, M. K. Leifland, E. Moa, M. Hemmendorff and N. Karssemeijer, "The Effect of Slab Size on Mass Detection Performance of a Screen-Film CAD System in Reconstructed Tomosynthesis Volumes", IWDM '10: Proceedings of the 10th international workshop on Digital Mammography, 2010:497-504.
- A. Mendrik, E. Vonken, J. Dankbaar, M. Prokop and B. van Ginneken, "Noise filtering in thin-slice 4D cerebral CT perfusion scans", Medical Imaging, 2010;7623:76230N1-76230N8.
- M. Kallenberg and N. Karssemeijer, "Comparison of Tilt Correction Methods in Full Field Digital Mammograms", IWDM '10: Proceedings of the 10th international workshop on Digital Mammography, 2010:191-196.
- A. Firouzian, R. Manniesing, H. Flach, R. Risselada, F. van Kooten, M. Sturkenboom, A. van der Lugt and W. Niessen, "Intracranial Aneurysm Segmentation in 3D CT Angiography: Method and Quantitative Validation", Medical Imaging, 2010;7623:76233M-1-76233M-8.
- A. Le, Y. Park, K. Ma, C. Jacobs and B. Liu, "Performance evaluation for volumetric segmentation of multiple sclerosis lesions using MATLAB and computing engine in the graphical processing unit (GPU)", Medical Imaging, 2010;7628(1):76280W-76280W-6.
- E. Smit, J. Dankbaar, A. Mendrik, B. van Ginneken, E. Vonken and M. Prokop, "Reconstruction of High Quality CT Angiography from Noisy Cerebral CT Perfusion Data", Annual Meeting of the Radiological Society of North America, 2010.
- G. Litjens, M. Heisen, J. Buurman and B. ter Romeny, "Pharmacokinetic models in clinical practice: what model to use for DCE-MRI of the breast?", IEEE International Symposium on Biomedical Imaging, 2010:185-188.
- B. van Ginneken, "Computer-aided diagnosis in chest imaging: how to improve performance and avoid reinventing the wheel", IEEE International Symposium on Biomedical Imaging, 2010:274.
- I. Išgum, M. Prokop, P. Jacobs, M. Gondrie, W. Mali, M. Viergever and B. van Ginneken, "Automatic coronary calcium scoring in low-dose non-ECG-synchronized thoracic CT scans", Medical Imaging, 2010;7624:76240M1-76240M8.
- C. Jacobs, K. Ma, P. Moin and B. Liu, "An automatic quantification system for MS lesions with integrated DICOM structured reporting (DICOM-SR) for implementation within a clinical environment", Medical Imaging, 2010;7628(1):76280K-76280K-8.
- F. Ciompi, O. Pujol and P. Radeva, "A meta-learning approach to conditional random fields using error-correcting output codes", International Conference on Pattern Recognition, 2010:710-713.
- L. Hogeweg, C. Mol, P. de Jong and B. van Ginneken, "Rib suppression in chest radiographs to improve classification of textural abnormalities", Medical Imaging, 2010;7624:76240Y1-76240Y6.
- A. Makarau, H. Huisman, R. Mus, M. Zijp and N. Karssemeijer, "Breast MRI intensity non-uniformity correction using mean-shift", Medical Imaging, 2010;7624:76242D.
- M. Nillesen, R. Lopata, H. Huisman, J. Thijssen, L. Kapusta and C. de Korte, "3D cardiac segmentation using temporal correlation of radio frequency ultrasound data", Medical Image Computing and Computer-Assisted Intervention, 2009;12:927-934.
- P. Vos, T. Hambrock, J. Barentsz and H. Huisman, "Automated calibration for computerized analysis of prostate lesions using pharmacokinetic magnetic resonance images", Medical Image Computing and Computer-Assisted Intervention, 2009;12:836-843.
- R. Reinartz, B. Platel, T. Boselie, H. van Mameren, H. van Santbrink and B. ter Romeny, "Cervical vertebrae tracking in video-fluoroscopy using the normalized gradient field", Medical Image Computing and Computer-Assisted Intervention, 2009;12(Pt 1):524-531.
- E. van Rikxoort, M. Prokop, B. de Hoop, M. Viergever, J. Pluim and B. van Ginneken, "Automatic segmentation of the pulmonary lobes from fissures, airways, and lung borders: evaluation of robustness against missing data", Medical Image Computing and Computer-Assisted Intervention, 2009(5761):263-271.
- P. Lo, B. van Ginneken, J. Reinhardt and M. de Bruijne, "Extraction of Airways from CT (EXACT09)", The Second International Workshop On Pulmonary Image Analysis, 2009:175-189.
- R. Hupse and N. Karssemeijer, "The use of contextual information for computer aided detection of masses in mammograms", Medical Imaging, 2009;7260:72600Q.
- S. Muenzing, K. Murphy, B. van Ginneken and J. Pluim, "Automatic detection of registration errors for quality assessment in medical image registration", Medical Imaging, 2009;7259:72590K1-72590K9.
- M. Niemeijer, B. van Ginneken and M. Abràmoff, "Automatic classification of retinal vessels into arteries and veins", Medical Imaging, 2009;7260:72601F1-72601F8.
- F. Ciompi, O. Pujol, E. Fernandez-Nofrerias, J. Mauri and P. Radeva, "Ecoc random fields for lumen segmentation in radial artery ivus sequences", Medical Image Computing and Computer-Assisted Intervention, 2009:869-876.
- S. Kabus, T. Klinder, K. Murphy, B. van Ginneken, C. Lorenz and J. Pluim, "Evaluation of 4D-CT Lung Registration", Medical Image Computing and Computer-Assisted Intervention, 2009;5761:747-754.
- M. Niemeijer, B. van Ginneken and M. Abràmoff, "A Linking Framework for Pixel Classification Based Retinal Vessel Segmentation", Medical Imaging, 2009;7262:726216-1-726216-8.
- M. Samulski, A. Hupse, C. Boetes, G. den Heeten and N. Karssemeijer, "Analysis of probed regions in an interactive CAD system for the detection of masses in mammograms", Medical Imaging, 2009;7263(1):726314.
- M. Niemeijer, M. Garvin, K. Lee, B. van Ginneken, M. Abràmoff and M. Sonka, "Registration of 3D spectral OCT volumes using 3D SIFT feature point matching", Medical Imaging, 2009;7259:72591I-1-72591I-8.
- C. Sánchez, M. Niemeijer, T. Kockelkorn, M. Abràmoff and B. van Ginneken, "Active learning approach for detection of hard exudates, cotton wool spots, and drusen in retinal images", Medical Imaging, 2009;7260:72601I1-72601I8.
- M. Kallenberg and N. Karssemeijer, "Using Volumetric Density Estimation in Computer Aided Mass Detection in Mammography", Proceedings of SPIE – Volume 7263, Medical Imaging 2009: Computer-Aided Diagnosis, 2009;7263(1):72600T.
- P. Maduskar and M. Acharyya, "Automatic identification of intracranial hemorrhage in non-contrast CT with large slice thickness for trauma cases", Medical Imaging, 2009;7260:726011.1-726011.8.
- G. van Schie and N. Karssemeijer, "Noise model for microcalcification detection in reconstructed tomosynthesis slices", Medical Imaging, 2009;7260:72600M.
- C. Gatta, J. Valencia, F. Ciompi, O. Leor and P. Radeva, "Toward robust myocardial blush grade estimation in contrast angiography", Pattern Recognition and Image Analysis, 2009:249-256.
- F. Ciompi, O. Pujol, O. Leor, C. Gatta, A. Vida and P. Radeva, "Enhancing in-vitro IVUS data for tissue characterization", Pattern Recognition and Image Analysis, 2009:241-248.
- D. Vukadinovic, T. van Walsum, S. Rozie, T. de Weert, R. Manniesing, A. van der Lugt and W. Niessen, "Carotid artery segmentation and plaque quantification in CTA", Proc. IEEE Int. Symp. Biomedical Imaging: From Nano to Macro ISBI '09, 2009:835-838.
- E. van Rikxoort, W. Baggerman and B. van Ginneken, "Automatic segmentation of the airway tree from thoracic CT scans using a multi-threshold approach", The Second International Workshop on Pulmonary Image Analysis, 2009:341-349.
- A. Mendrik, E. Vonken, A. Waaijer, E. Smit, M. Prokop and B. van Ginneken, "Segmentation of arteries and veins on 4D CT perfusion scans for constructing arteriograms and venograms", Medical Imaging, 2009;7259:72590Z1-72590Z7.